Installation, Setup and Operation

INSTRUCTIONS

for

SUNNEN® POWER STROKED HONING MACHINE

Model: ML-5000

THESE INSTRUCTIONS COVERS THE ABOVE MODEL EQUIPPED WITH NEW FOOT PEDAL - BEGINNING WITH SERIAL NO.1040.

READ THE FOLLOWING INSTRUCTIONS THOROUGHLY AND CAREFULLY BEFORE UNPACKING, INSPECTING, OR INSTALLING THE SUNNEN® ML-5000 POWER STROKED HONING MACHINE.

“SUNNEN AND THE SUNNEN LOGO ARE REGISTERED TRADEMARKS OF SUNNEN PRODUCTS COMPANY”

SUNNEN® PRODUCTS COMPANY • 7910 MANCHESTER ROAD • ST. LOUIS, MO 63143, U.S.A. • PHONE: 314-781-2100
GENERAL INFORMATION

The Sunnen® equipment has been designed and engineered for a wide variety of parts within the capacity and limitation of the equipment. With proper care and maintenance this equipment will give years of service.

READ THE FOLLOWING INSTRUCTIONS CAREFULLY AND THOROUGHLY BEFORE UNPACKING, INSPECTING, OR INSTALLING THIS EQUIPMENT.

IMPORTANT: Read any supplemental instructions BEFORE installing this equipment. These supplemental instructions give you important information to assist you with the planning and installation of your Sunnen equipment.

Sunnen Technical Service Department is available to provide telephone assistance for installation, programming, & troubleshooting of your Sunnen equipment. All support is available during normal business hours, 8:00 AM to 4:30 PM Central Time. Emergency breakdown support is available on a 24 hour / 7 day basis.

Review all literature provided with your Sunnen equipment. This literature provides valuable information for proper installation, operation, and maintenance of your equipment. Troubleshooting information can also be found within the Instructions. If you cannot find what you need, call for technical support.

Where applicable, programming information for your Sunnen equipment is also included. Most answers can be found in the literature packaged with your equipment.

Help us help you. When ordering parts, requesting information, or technical assistance about your equipment, please have the following information available:

- Have ALL MANUALS on hand. The Customer Services Representative or Technician will refer to it.
- Have Model Number and Serial Number printed on your equipment Specification Nameplate.
- Where Applicable: Have Drive model and all nameplate data. Motor type, brand, and all nameplate data.

For Troubleshooting, additional information may be required:
- Power distribution information (type - delta, wye, power factor correction; other major switching devices used, voltage fluctuations)
- Installation Wiring (separation of power & control wire; wire type/class used, distance between drive and motor, grounding).
- Use of any optional devices/equipment between the Drive & motor (output chokes, etc.).

For fast service on your orders call:
Sunnen Automotive Customer Service toll free at: 1-800-772-2878
Sunnen Industrial Customer Service toll free at: 1-800-325-3670
Customers outside the USA, contact your local authorized Sunnen Distributor.
Additional information available at: http://www.sunnen.com or e-mail: sunnen@sunnen.com

NOTE: Sunnen reserves the right to change or revise specifications and product design in connection with any feature of our products contained herein. Such changes do not entitle the buyer to corresponding changes, improvements, additions, or replacements for equipment, supplies or accessories previously sold. Information contained herein is considered to be accurate based on available information at the time of printing. Should any discrepancy of information arise, Sunnen recommends that user verify the discrepancy with Sunnen before proceeding.

ESD PREVENTION REVIEW

Let’s review the basics of a sound static control system and its effective implementation. First, in the three step plan:

1. Always ground yourself when handling sensitive components or assemblies.
2. Always use a conductive or shielded container during storage or transportation. These materials create a Faraday cage which will isolate the contents from static charges.
3. Open ESD safe containers only at a static safe work station.

At the static safe work station, follow these procedures before beginning any work:

A. Put on your wrist strap or foot grounding devices.
B. Check all grounding cords to make sure they are properly connected to ground, ensuring the effective dissipation of static charges.
C. Make sure that your work surface is clean and clear of unnecessary materials, particularly common plastics.
D. Anti-static bubble wrap has been included for use at the machine when an ESD safe workstation is not available.

You are now properly grounded and ready to begin work. Following these few simple rules and using a little common sense will go a long way toward helping you and your company in the battle against the hazards of static electricity. When you are working with ESD sensitive devices, make sure you:

GROUND
ISOLATE
NEUTRALIZE
SUNNEN® LIMITED PRODUCT WARRANTY

Sunnen® Products Company and its subsidiaries (SPC) warrant that all new SPC honing machines, gaging equipment, tooling, and related equipment will be free of defects in material and/or workmanship for a period of one year from the date of original shipment from SPC.

Upon prompt notification of a defect during the one-year period, SPC will repair, replace, or refund the purchase price, with respect to parts that prove to be defective (as defined above). Any equipment or tooling which is found to be defective from improper use will be returned at the customer’s cost or repaired (if possible) at customer’s request. Customer shall be charged current rates for all such repair.

Prior to returning any SPC product, an authorization (RMA#) and shipping instructions must be obtained from the Customer Service Department or items sent to SPC will be returned to the customer.

Warranty Limitations and Exclusions: This Warranty does not apply to the following:

- Normal maintenance items subject to wear and tear: (belts, fuses, filters, etc).
- Damages resulting from but not limited to:
 - Shipment to the customer (for items delivered to customer or customer's agent F.O.B., Shipping Point)
 - Incorrect installation including improper lifting, dropping and/or placement
 - Incorrect electric power (beyond +/- 10% of rated voltage) including intermittent or random voltage spikes or drops
 - Incorrect air supply volume and/or pressure and/or contaminated air supply
 - Electromagnetic or radio frequency interference from surrounding equipment (EMI, RFI)
 - Storm, lightning, flood or fire damage
 - Failure to perform regular maintenance as outlined in SPC manuals
 - Improper machine setup or operation causing a crash to occur
 - Misapplication of the equipment
 - Use of non-SPC machines, tooling, abrasive, fixturing, coolant, repair parts, or filtration
 - Incorrect software installation and/or misuse
 - Non-authorized customer installed electronics and/or software
 - Customer modifications to SPC software

THE LIMITED WARRANTY DESCRIBED HEREIN IS EXPRESSLY IN LIEU OF ANY OTHER WARRANTIES. SPC MAKES NO REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WHETHER AS TO MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR ANY OTHER MATTER. SPC IS NOT RESPONSIBLE FOR THE IMPROPER USE OF ANY OF ITS PRODUCTS. SPC SHALL NOT BE LIABLE FOR DIRECT, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES INCLUDING BUT NOT LIMITED TO: LOSS OF USE, REVENUE, OR PROFIT. SPC ASSUMES NO LIABILITY FOR PURCHASED ITEMS PRODUCED BY OTHER MANUFACTURERS WHO EXTEND SEPARATE WARRANTIES, REGARDLESS OF ANY RIGHTS AFFORDED BY LAW TO BUYER, SPC'S LIABILITY, IF ANY, FOR ANY AND ALL CLAIMS FOR LOSS OR DAMAGES WITH RESPECT TO THE PRODUCTS, AND BUYER'S SOLE AND EXCLUSIVE REMEDY THEREFORE, SHALL IN ALL EVENTS BE LIMITED IN AMOUNT TO THE PURCHASE PRICE OF THAT PORTION OF THE PRODUCTS WITH RESPECT TO WHICH A VALID CLAIM IS MADE.

Shipping Damages

Except in the case of F.O.B., Buyer’s destination shipments, SPC will not be liable for any settlement claims for obvious and/or concealed shipping damages. The customer bears the responsibility to unpack all shipments immediately and inspect for damage. When obvious and/or concealed damage is found, the customer must immediately notify the carrier’s agent to make an inspection and file a claim. The customer should retain the shipping container and packing material.

SUNNEN® SOFTWARE LICENSE AGREEMENT

This document is a Legal Agreement between you, as user and licensee (Licensee), and Sunnen® Products Company (SPC) with respect to preprogrammed software (Software) provided by SPC for use on SPC Equipment. By using the Software, you, as Licensee, agree to become bound by the terms of this Agreement.

In consideration of payment of the license fee (License Fee) which is part of the price evidenced by your receipt (Receipt), SPC grants to you as Licensee a non-exclusive right, without right to sub-license, to use the particular copy of the SPC Software licensed hereunder only on the particular equipment sold with the Software. SPC reserves all rights including rights not otherwise expressly granted, and retain title and ownership to the Software including all subsequent copies or updates in any media. The Software and all accompanying written materials are covered by copyrights owned by SPC. If supplied on removable media (floppy disk), you, as Licensee, may copy the Software only for back up purposes; or you may request that SPC copy the Software for you for the same purposes. All other copying of the Software or of the accompanying written materials is expressly forbidden and is in violation of the Agreement.

The Software and accompanying written materials (including the user’s manual, if any) are provided in an “as is” condition without warranty of any kind including the implied warranties of merchantability and fitness for a particular purpose, even if SPC has been advised of this purpose. SPC specifically does not warrant that it will be liable as a result of the operation of the Software for any direct, indirect, consequential or accidental damages arising out of the use of or inability to use such product even if SPC has been advised of the possibility of such use. It is recognized that some states do not allow the exclusion or limitation of liability for consequential or accidental damages and to the extent this is true, the above limitations may not apply.

Any alteration or reverse engineering of the software is expressly forbidden and is in violation of this agreement.

SPC reserves the right to update the software covered by this agreement at any time without prior notice and any such updates are covered by this agreement.
The ML-5000, like any machine tool, may be dangerous if used improperly. As a result of our commitment to continual safety improvement, many new safety features have been incorporated into this machine. However, these features cannot protect the operator from all hazards of misuse or abuse of the product. Please read all warnings and instructions before attempting to use this machine.

DO NOT turn power on until all guards and covers are securely in place.

DO NOT remove or defeat any safety device.

Depressing foot pedal with power “ON” can start spindle and stroker motion. Use foot pedal ONLY to start a honing cycle after workpiece is securely fixtured and located on honing tool.

Begin each new setup by depressing Emergency Stop button to clear all previous spindle and stroker speed settings.

NEVER open or remove any machine cover or protective guard with power "ON." Always disconnect power at main enclosure before servicing ML-5000.¹

WARNING: Do not wear cotton or heavy gloves while operating this equipment! If gloves must be worn, wear only the tear-away type.

Always wear eye protection when operating ML-5000.

DO NOT attempt any repair or maintenance procedure beyond those described in this book. Contact your Sunnen Service Representative for repairs not covered in this book.

Manual stroked honing and truing should only be performed by operators trained to use safe manual honing practices. The key for switch to disable stroker and allow manual honing should be kept by a supervisor or skilled honing operator to prevent unauthorized manual honing.

Much of the safety of the honing operation is dependent on how workpiece is fixtured. Several standard fixturing components are available but each is limited to certain types of applications. “Homemade” fixtures are also not uncommon and can be quite effective if designed and used properly. Sometimes it is necessary to clamp workpieces lightly when honing with special fixtures to minimize bore distortion. Likewise, tooling for small diameter honing is inherently fragile. Therefore, **Always start a new setup with speeds and feed forces that are much lower than recommended to test stability of tooling and fixturing.** After that, speeds and feed forces may be increased slowly to recommended values.

If specially built automation components are added to this system, be sure that safety is not compromised. If necessary, obtain special enlarged work area safety system from Sunnen® Products Co.

¹ **DO NOT** touch electrical components until main input power has been turned off and **CHARGE** lamps are extinguished. **WARNING:** The capacitors are still charged and can be quite dangerous.

IMPORTANT NOTE

The temperature requirements of the Sunnen® ML-5000 Power Stroked Honing Machine have been established as 35 degrees C (95 degrees F). Above this temperature, an optional cooler will be available to handle temperatures from 35º to 46º C (95º to 115º F). IT IS NOT recommended that the ML Machine be operated at temperatures above 46º C (115º F). Sunnen Products Company warrants the ML Machine for operating environments up to 35ºC (95º F). For operating environments of 35º to 46º C (95º to 115º F) the warranty only applies if the optional cooler is installed on the Machine. No warranty coverage is offered for operating environments above 46º C (115º F).
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section/Maintenance Item</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Information</td>
<td>ii</td>
</tr>
<tr>
<td>ESD Prevention Review</td>
<td>ii</td>
</tr>
<tr>
<td>Sunnen® Limited Product Warranty</td>
<td>iii</td>
</tr>
<tr>
<td>Sunnen® Software License Agreement</td>
<td>iii</td>
</tr>
<tr>
<td>Important Note</td>
<td>iv</td>
</tr>
<tr>
<td>Safety Instructions</td>
<td>iv</td>
</tr>
<tr>
<td>Table Of Contents</td>
<td>v</td>
</tr>
<tr>
<td>General Information & Specifications</td>
<td>vii</td>
</tr>
<tr>
<td>Introduction</td>
<td>vii</td>
</tr>
<tr>
<td>SECTION 1 - INSTALLATION</td>
<td></td>
</tr>
<tr>
<td>General</td>
<td>1</td>
</tr>
<tr>
<td>Tools & Materials</td>
<td>1</td>
</tr>
<tr>
<td>Installation</td>
<td>1</td>
</tr>
<tr>
<td>Side Tray</td>
<td>2</td>
</tr>
<tr>
<td>Pneumatics</td>
<td>3</td>
</tr>
<tr>
<td>Transformer Installation</td>
<td>3</td>
</tr>
<tr>
<td>Electrical</td>
<td>3</td>
</tr>
<tr>
<td>Coolant System</td>
<td>4</td>
</tr>
<tr>
<td>Automatic Size Control</td>
<td>5</td>
</tr>
<tr>
<td>Optional Light Curtain</td>
<td>6</td>
</tr>
<tr>
<td>Light Curtain Function Check</td>
<td>7</td>
</tr>
<tr>
<td>SECTION 2 - PREPARING FOR OPERATION</td>
<td></td>
</tr>
<tr>
<td>General</td>
<td>9</td>
</tr>
<tr>
<td>Major Components</td>
<td>9</td>
</tr>
<tr>
<td>Operator Controls</td>
<td>10</td>
</tr>
<tr>
<td>Safety Symbols</td>
<td>16</td>
</tr>
<tr>
<td>Workholding Fixture</td>
<td>16</td>
</tr>
<tr>
<td>Runout - Mandrel</td>
<td>16</td>
</tr>
<tr>
<td>Truing Mandrel & Stone</td>
<td>17</td>
</tr>
<tr>
<td>Runout - Conical & Parallel</td>
<td>18</td>
</tr>
<tr>
<td>Automatic Size Control</td>
<td>19</td>
</tr>
<tr>
<td>Stock Removal Rate</td>
<td>20</td>
</tr>
<tr>
<td>Feed Regulator</td>
<td>20</td>
</tr>
<tr>
<td>Automatic Stonewear Compensator</td>
<td>21</td>
</tr>
<tr>
<td>SECTION 3 - SETUP & OPERATION</td>
<td></td>
</tr>
<tr>
<td>General</td>
<td>23</td>
</tr>
<tr>
<td>Safety Precautions</td>
<td>23</td>
</tr>
<tr>
<td>Operating Tips</td>
<td>23</td>
</tr>
<tr>
<td>Setup - Manual Honing</td>
<td>23</td>
</tr>
<tr>
<td>Operation - Manual Honing</td>
<td>25</td>
</tr>
<tr>
<td>Setup - Power Stroked Honing</td>
<td>25</td>
</tr>
<tr>
<td>Operation - Power Stroked Honing</td>
<td>29</td>
</tr>
<tr>
<td>Operation - Setup: PSC</td>
<td>30</td>
</tr>
<tr>
<td>Operation - Setup: CTC</td>
<td>31</td>
</tr>
<tr>
<td>SECTION 4 - ROUTINE MAINTENANCE</td>
<td></td>
</tr>
<tr>
<td>General</td>
<td>33</td>
</tr>
<tr>
<td>Cleaning</td>
<td>33</td>
</tr>
<tr>
<td>Lubrication</td>
<td>34</td>
</tr>
<tr>
<td>Routine Maintenance Schedule</td>
<td>34</td>
</tr>
<tr>
<td>Coolant System</td>
<td>34</td>
</tr>
<tr>
<td>Pump Maintenance</td>
<td>34</td>
</tr>
<tr>
<td>Spindle Belt</td>
<td>35</td>
</tr>
<tr>
<td>Stroker Belt</td>
<td>35</td>
</tr>
<tr>
<td>Light Curtain Function Check</td>
<td>35</td>
</tr>
<tr>
<td>Light Curtain Cleaning</td>
<td>36</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (cont’d)

SECTION 5 - TROUBLESHOOTING
- General .. 37
- Operational Troubleshooting .. 37
- Machine Operation Troubleshooting ... 38
- Error Messages: .. 38
- Problems / Solutions: ... 38

APPENDIXES

A - Special Topics
- Two-Stage Feed Force Guidelines .. 41
- Selecting Finishing Force & Finishing Stock Removal .. 41
- Setting Two-Stage Feed Force Feature .. 41
- Deciding Which Trigger Method Is Best For Application ... 42
- Feed Regulator .. 43
- Truing ... 44
- ASC Unit Notes .. 44
- Workpiece & Fixture Weight Limits .. 44
- Universal Fixtures ... 44
- Adjusting Finger Fixture: ... 45
- Changing to Gate Fixture Configuration: ... 45
- Torque Arm ... 45
- Hints .. 45
- Stroker Stop Position Modification .. 46
- Dip Switch Settings .. 46

B - General Honing Information
- Good Honing Practices ... 47
- Technical Data ... 47
- Alteration Of Honing Units .. 48
- Glossary Of Terms .. 50

C - Coolant
- System Flow Diagram ... 53

D - Coolant
- Troubleshooting .. 55

E - Stroker Carriage
- Hole Pattern ... 56

F - Declaration of Conformity
- Declaration .. 58
GENERAL INFORMATION & SPECIFICATIONS
Sunnen® Power Stroked Honing Machines - Model ML-5000

Diameter Range (I.D.)* -
Manual Stroking: 1.5 - 165 mm (.060 - 6.5 in.)
Power Stroking: 1.5 - 101,6 mm (.060 - 4.0 in.)

Range of Standard Probes for Automatic Sizing: 3.1 - 51 mm (.125 - 2.0 in.)

Stroke Length*: 6 - 170 mm (.236 - 6.7 in.)
Spindle Speeds: 200-3000 rpm - Variable in fine increments
P.S.C. Stroke Rate: 60-500 strokes / min - Variable in fine increments
P.S.C. Stroke Rate: 60-400 strokes / min - Variable in fine increments
P.S.C. Short Stroke Length: Approximately 13% of hone stroke length (Fixed)
Spindle Motor: 4,1 KW (5.5HP) inverter duty
Stroker Motor: 1,1 KW (1.5HP) inverter duty

Feed System Type (Patented Constant)
Feed Force System with): - Two-Stage Feed Force (Roughing &Finishing in 1-cycle)
- Variable Maximum Feed Rate Regulator
- Automatic Stonewear Compensator

Size Control: Zero Shut-Off or Automatic Size Control (ASC)
Coolant System (Roll Out Coolant Cart with): - Integral Work Area Drip Tray
- Pump
- Filtration System

Pump Motor: 0,36 KW (1/2HP)
Coolant Pump: 11,2 L/Min (3 GPM)
Coolant Capacity: 120 L (32 Gal.)
Coolant Requirements: Sunnen Industrial Honing Fluids
Floor Space: 1626D x 1219W x 1905H mm (64 x 48 x 75 in.) w/covers open
Color: Pearl Gray / Pewter Gray / Black Trim

Machine Weight (Less Coolant Cart): 725 kg (1600 lbs.)
Coolant Cart Weight (Dry): 125 kg (275 lbs.)
Pneumatic Requirements: 5,5 Bar (80 PSI)
Power Requirements: See Machine Nameplate or Electrical Specification Plate.
Noise Emission: Less than 72 db(A) continuous
Less than 74 db(A) peak
load (max. noise) condition in a typical factory environment.

*Stroke length, diameter range, and workpiece weight are contingent on machine configuration, workpiece, and application.

INTRODUCTION
This Instruction Manual provides information required to install, operate, and maintain Sunnen® ML-5000 Power Stroked Honing Machine.

When ordering parts for, or requesting information about your Machine, include model and serial numbers, located on Electrical Enclosure of your Machine.

In this book symbol [CE] indicates steps or information that are only for CE version of this machine. The CE version is constructed to meet highest level of safety standards as required by European Machinery Directive. Required for European market, this CE version is available for any customer. The regular version of this machine is quite safe for any operator exercising a normal degree of caution associated with machine tool use. The CE version provides an extra level of protection by minimizing risks of operator carelessness.

READ THE FOLLOWING INSTRUCTIONS CAREFULLY AND THOROUGHLY BEFORE UNPACKING, INSPECTING, OR INSTALLING THE SUNNEN ML-5000 POWER STROKED HONING MACHINE.

The ML-5000 Production Honing Machine is to be used for finishing bores in small workpieces. In finishing bores, this machine can achieve any or all of following results: fast stock removal, consistent final size, a high degree of cylindricity, fine surface finish. To achieve best results and ensure safe operation, ONLY Sunnen Tools and Abrasives are to be used in ML-5000.
Weight Installed:
Approximately 850 kg. (1875 lbs.) including coolant cart.

Floor Loading:
Less than 770 kg/sm (160 lbs/sf).

Scale:
1/4 in. = 1 ft.
1 mm = 48 mm

FIGURE 1-A, Floor Plan Layout (System Configuration)
GENERAL
Consult this section when unpacking, inspecting, and installing Sunnen® ML-5000 Power Stroked Honing Machine (see Figure 1-1). Hereafter referred to as the machine.

TOOLS & MATERIALS
The following tools and materials are required for unpacking and installing of your Machine:
- Knife
- Knife Hex Wrenches
- Hammer
- Open End Wrenches
- Crow Bar
- Cleaning Solvent
- Tin Snips

INSTALLATION
Read the following instructions carefully and thoroughly before unpacking, inspecting and installing the machine. All references to right and left in these instructions, unless otherwise noted, are as seen by operator as one looks at machine or assembly being described (refer to Figure 1-1).

NOTE: When ordering parts for, or requesting information about your Machine, include Model and Serial Number printed on Nameplate of your Machine.

1. Remove banding straps and shipping crate from around Machine.
2. Remove all loose components and boxes packaged with your Machine.
3. Inspect Machine and components for dents, scratches, or damage resulting from improper handling by carrier. If damage is evident, immediately file a claim with carrier.

CAUTION
MACHINE IS VERY HEAVY. Use care when lifting and moving Machine.

4. Lift Machine using a 6-ton forklift (see Figure 1-2).

NOTE: Only qualified riggers familiar with moving and setting of large and heavy machinery should be permitted to handle Machine. Machine is a precision machine and should be handled with the utmost care.

To lift and move ML-5000, fork only from front or rear of machine. Place one fork under machine base and one under electrical enclosure but close to machine base. (Structural steel under electrical enclosure is welded to machine base to prevent actually lifting machine by enclosure.)
CAUTION
Foot Pedal and its conduit to machine are located loosely in front opening of machine. Be careful not to pinch conduit with forks. Place Foot Pedal assembly on a fork so that it does not drag when moving machine.

5. Move Machine to desired location.

NOTE: Machine should be locate on a leveled concrete floor away from heavy traffic. Allow 457 mm (18 in) from rear of machine to any adjacent walls and 1 mm (3 ft.) from right side of machine to any adjacent walls to give the operator room to service Machine. There should be an overhead track and chainfall located directly over Machine to aid in head installation. If no overhead track is available, allow ample space around Machine for use of a portable hoist-stand for heavy lifting.

6. After machine is placed in desired location, it will be necessary to stabilize machine with screw located on bottom of right rear corner of machine base. For best results place a small block of steel, 5 to 8 mm thick (3/16 to 5/16”), under stabilizing screw. Adjust screw until machine cannot be made to rock on two corners. Then tighten jam nut to lock screw in place.

7. Open machine covers use a 4mm hex key wrench to release quarter turn latch near rear corner of each cover. Place hood prop securely into bracket on hood to hold it open (see Figure 1-3).

8. After removing packing material from inside machine, close both hoods and make sure hoods are latched securely.

WARNING
Hoods do not need to be opened for setup. Never have hoods open when power is on. Access to internal systems is only necessary for maintenance which should only be done with power turned off.

9. Unpack boxes packaged with Machine and check all items against enclosed packing list. Notify Sunnen Products Company of any missing or damaged items.

10. After unpacking and installing Machine, clean and lubricate. Use a good quality industrial solvent to remove all grease and preservative from the machine surfaces (refer to Section 4).

SIDE TRAY
Unpack side tray. Place mat provided into tray. Tray can hang on either side of machine or on side of coolant cart. Plastic spacers on bottom of tray bracket can be placed in two different positions to accommodate different widths of machine side and coolant cart side (see Figure 1-4). Only one tray is provided as standard. If needed, a second tray can be ordered (Sunnen part # ML-6510).
PNEUMATICS

Connect pneumatic line (airline) as follows (see Figure 1-5):

NOTE: The Factory Air Supply Line is not supplied. A minimum of 0.55 MPa (80 psi) clean, dry compressed air is required for proper operation.

1. Remove hose barb and install Quick-Disconnect (not supplied) in airline port on Airline Filter Regulator.

 NOTE: Elbow has 1/8 NPT threads. Elbow and adapter can be removed to access R 1/8 (BSPT) threads in inlet port of filter-regulator.

CAUTION

Do not connect ML-5000 to any air supply with a pressure greater than 1.4 MPa (200 psi).

2. CONNECT 1/2 in. (50 mm) factory air supply line (not supplied) to Quick-Disconnect. Route a 6 mm (1/4 IN.) ID air supply line through slot in bottom of machine base, up through openings in top of base to air filter-regulator. Do not route air supply line over top of base or hood will not be able to close properly and will pinch air supply line.

3. Filter-regulator has been factory set to .55 MPa (80 psi). Air supply to machine must be at least this or machine will not operate properly. With air supply connected, check regulator gage for .55 MPa (80 psi). If not set correctly, lift knob on top of regulator and turn to adjust. After setting correct regulated pressure push knob down to lock.

TRANSFORMER INSTALLATION

Most machine models are shipped wired for 230 volt. To install optional transformer for other voltages, refer to wiring instructions on front of transformer (see Figure 1-6).

CAUTION

A step-down transformer is optional on some machine models. Be certain to verify transformer Kva rating (where applicable), as well as local electrical code requirements before sizing and installing the incoming power wiring. End user must use a step-down transformer where factory electrical power varies more than ±10% of machine's nameplate voltage.

All wiring is to be preformed by a competent, licensed electrician.

Note: Step-down or voltage regulating transformers are external (peripheral) to machine tool and are considered primary input line (source) for machine. Local electrical code or practice may require a circuit breaker or other switching device for isolation of electrical power when this type of transformer is used. In such cases, machine tool end user is required to supply necessary circuit breaker or switching device. **FAILURE TO COMPLY CAN RESULT IN PERSONAL INJURY AND/OR DAMAGE TO MACHINE.**

ELECTRICAL

All wiring is to be performed by a competent, Licensed Electrician in accordance with all local, state, and federal codes and regulations. Along with the information provided on the machine Electrical Specification Plate.

1. Loosen Safety Latches, using a screwdriver; or if applicable, unlock doors to Electrical Control Enclosure using key supplied with machine.

WARNING

Residual Voltage exists for 2-3 minutes after Master ON/OFF Switch is turned OFF.

2. Turn Master ON/OFF Switch to OFF position and open doors (see Figure 1-7).
3. Insert Electrical Supply Cord through Oil Tight Fitting in enclosure entrance hole.
4. Strip 254 mm (10 in.) off cable's outer jacket.
5. Strip 6 mm (1/4 in.) of insulation off each wire.
6. Connect Green Wire (GRN) to PE Terminal.
7. Connect other three wires to Electrical Disconnect Block.
8. Route and secure cord inside of Enclosure.
9. Tighten Oil Tight Fitting.
10. Close and secure/lock Door(s) to Electrical Control Enclosure.
11. Route and connect Electrical Supply Cord to main power source.
12. Turn ON Master ON/OFF Switch.

COOLANT SYSTEM

Add coolant as follows (see Figure 1-8):

1. Remove packing materials from coolant system. Pump and motor are mounted on flexible vibration isolators. Packing materials have been added to secure pump and motor during shipping. Make sure all such material is removed and assembly is free to float on isolators. To remove packing materials inside reservoir, lift out plastic work area liner, open reservoir cover and lift out sediment tray. Make sure all packing material is removed from coolant level float so it is free to function properly.

2. Remove filter cover clamp and filter cover.

3. Remove filter element from its protective bag and insert it into filter canister. Rotate filter element slightly while inserting to make it slide down center post more easily.

4. Make sure that sealing ring in filter cover is seated properly in its groove, then replace filter cover.

5. Replace Covers, centering carefully on rubber gaskets to assure no leakage. Then replace Clamps and tighten Hex Bolt in Clamp Halves until halves meet, then tighten T-Handle.

6. Close air vent (all way clockwise), then crack it open 1/4 to 1/2 turn to vent canister during filling.

7. Move coolant cart close enough to machine to connect coolant system cable from machine. Close latch on fixed connector base to secure connection. Attach coiled Airline on rear of Coolant Cart to the bulkhead fitting on the front inside face of machine base (refer to flow diagram packaged with your machine).

8. Fill coolant system with coolant until coolant level gage is somewhere between full and -20 liters.

NOTE: Use only Sunnen Industrial Honing Fluids. Substituting other cutting fluids or diluting Sunnen Honing Oil can adversely affect workpiece surface finish and stone/tool life. If using Sunnen Coolant Concentrate, dilute with water as specified and check concentration daily.

9. On operator station turn coolant selector to CONSTANT and turn machine power on momentarily to check pump motor rotation. An arrow marked on pump indicates proper direction for rotation. If pump is rotating backwards, turn power off and turn off main power supply to machine. Reverse any two leads from electrical supply cord coming into machine. Do not change any machine or motor wiring or pump may not rotate in right direction if coolant system is moved to another machine.

10. Turn POWER on. With air vent slightly open, air will bleed out of filter canister. When oil appears in partially open vent (about 1 to 2 minutes), close vent (clockwise).

11. Place sediment tray in top of coolant system. Note that orientation is import. Lower discharge side should be to back of coolant system.

12. Pour additional coolant into reservoir by filling sediment tray and allowing it to overflow. Watch
coolant level gage during filling. Do not overfill coolant system. Level of main reservoir must be below top of clean coolant reservoir or oil delivered to work area will not be clean.

13. Foot pedal assembly must slide under coolant cart as coolant cart is pushed in. First, make sure machine power is off.

WARNING
Never remove foot pedal cover with power on. Machine cycle will start any time foot pedal is depressed with power on.

14. Squeeze lower front corners of foot pedal cover together to disengage it from foot pedal assembly and lift it off.

15. Pull foot pedal assembly under coolant cart so that it is in front of cart.

16. Push straight down on foot pedal cover, so notch in cover engages head of Capscrew and rear pins engage cutout in pedal base. Make sure that cover engages capscrew so latch will be engage on inside of foot pedal cover (see Figure 1-9). Squeeze lower front corners of cover together to insert pins on cover in holes on foot pedal base plate.

17. Push coolant cart into machine. Be sure that flexible conduit retracts into opening in machine base as cart is pushed in.

18. Place cart in a position where no coolant can escape work area and where operator has comfortable access to front panel and work area. Lock casters on coolant cart to keep it from moving during operation.

AUTOMATIC SIZE CONTROL
Install Automatic Size Control (ASC) Unit as follows (see Figure 1-10):

1. Unpack Automatic Size Control (ASC) Unit. Turn Clamp Knob on ASC unit counter-clockwise and pivot Clamp Pivot Block clockwise to open clamp. Position clamp on Rail as shown and tighten clamp to secure ASC unit to machine frame.

2. Check that ASC unit movement will not interfere with stroker or fixturing. Turn ASC PROBE selector switch to DOWN. Pull Actuator Arm away from machine so that cylinder is extended and Arm is horizontal. Plug in and thread on keyed Cable End to connector at back lower left corner of work area. Connect white air line by pushing into place into air fitting with white washer. Connect black air line to other fitting.

WARNING
Keep hands away from ASC unit when turning ASC PROBE selector to move ASC probe up or down.

3. Turn ASC PROBE selector switch back and forth between UP and DOWN. ASC unit movement should be smooth and crisp without bouncing. If necessary, adjust speeds by turning flow control valves on black and white air lines inside left hood of machine.
4. Set coarse vertical position of Probe:
Select and install honing unit according to instructions. Adjust runout of tool using concentric part or alignment bushing. Lock bushing onto mandrel with EXPAND switch leaving about 12 mm (1/2 in.) of bore extended past tool.
Select ASC probe of correct size to fit bushing bore size and screw onto stud on Probe Body. Center Probe Body in ASC Arm by loosening Probe Clamp knob, repositioning, and reclamping.
Turn ASC PROBE selector switch to UP. Loosen Clamp Knob and slide ASC unit forward until Probe meets bushing bore. Retighten Clamp Knob.
Loosen Angle Plate screw and reposition Angle Plate to set Probe at same height as bushing hole. Retighten Angle Plate screw. To help guide Probe toward work piece, loosen Bumper screw, slide Bumper to contact Fine Position Rod and retighten screw.

5. Set horizontal position of Probe:
Note distance from center of Probe to center of bushing. Loosen Clamp Knob and slide ASC unit toward front of machine to access two Base screws. Loosen two Base screws and slide Base along screw slots distance noted. Retighten Base screws and slide ASC unit forward to bring Probe in front of bushing. Probe should be centered in front of bushing.
Set this horizontal position so that Clamp Knob will not touch machine frame when ASC Unit is slid along Rail.

OPTIONAL LIGHT CURTAIN
(CE Machines Only) CE machines come with optional Light Curtain installed. Light is preset at the factory; but it is best to check curtain for proper alignment before operating machine. To check and/or adjust curtain, proceed as follows (see Figure 1-11):
1. Check for signs of external damage to the light curtain transmitter, receiver, or cables and wiring.
2. Inspect electrical connections between guarded machine’s control system and light curtain. Verify they are properly connected.
3. Turn on power to machine.
4. Verify that curtain is in alignment. The individual beam indicators located on the receiver will illuminate when alignment of a beam is not met (refer to Figure 1-11).
LIGHT CURTAIN FUNCTION TEST
(CE Machines Only) Check Light Curtain operation as follows (see Figure 1-12):

WARNING
The test outlined below must be performed at installation, according to employer’s regular inspection program and after any maintenance, tooling change, setup, adjustment, or modification to Light Curtain System or the guarded machine. Where a guarded machine is used by multiple operators or shifts, it is suggested that the test be performed at each shift or operation change. Testing ensures that Light Curtain and machine control system work properly to stop the machine. Failure to test properly could result in injury to personnel.

1. Interrupt light curtain system with proper size test object (Test object size: 30 mm diameter). When using the test object, guide it through the detection zone as shown below. At least one individual beam indicator must be lit while test object is anywhere in detection zone.

2. Start machine. While machine is in motion, interrupt detection zone with test object. Machine should stop immediately. Never insert test object into dangerous parts of machine.

3. With machine at rest, interrupt detection zone with test object. Verify that machine will not start with test object in detection zone.

4. Verify that braking system is working properly. Machine must come to a quick controlled stop when light curtain is interrupted. Drive faults, spindle coasting and stroker coasting are unacceptable.
SECTION 2
PREPARING FOR OPERATION

GENERAL
Consult this section when preparing the Machine for operation.

MAJOR COMPONENTS
For location of major components on your machine, (see Figure 2-1).

FIGURE 2-1, ML-5000 Honing Machine
OPERATOR CONTROLS

For location and function of the operator controls for your machine, refer to Figures 2-2 thru 2-5. (Refer to Tables 2-1 & 2-2 for symbols used on CE machines).

1. POWER OFF - Turns machine power off. All functions are disabled, however spindle speed, stroker speed, and extra stroke settings are retained.

2. POWER ON - Turns machine power on. Lighted button is an indication of power on status.

3. STROKER JOG - Pressing this and holding it down causes stroker carriage to move slowly to one end of stroke. Repeating this will cause stroker to move slowly to other end of stroke. Releasing button will stop stroker immediately even though end of stroke may not have been reached.

4. CYCLE STOP - Stops honing cycle.

5. CYCLE START - Starts honing cycle if STROKING selector is set to "POWER".

6. COOLANT - Two position selector switch:
 - CONSTANT - Coolant flow at all times when power is on.
 - CYCLE ONLY - Coolant flow only during honing cycle.

7. ASC PROBE - Two position selector switch:
 - UP - Automatic Size Control actuator lifts probe into gaging position.
 - DOWN - Automatic Size Control actuator moves probe to its retracted position.

8. FEED - Two position selector switch:
 - EXPAND - Used for setup only. Expands honing tool until stone contacts workpiece for setting Stock Removal amount. Locks an alignment bushing on honing tool for checking and adjusting tool runout. Honing cycle cannot be started when "EXPAND" is selected.
 - RETRACT - Retracts honing tool.

9. EMERGENCY STOP - Opens electrical circuits to stop all machine functions. Cancels all setup information requiring operator to re-enter setup before continuing. Button must be rotated clockwise until it pops up before machine can be re-started with POWER ON button.

10. SIZE CONTROL - Two position selector switch sets size control mode:
 - ZERO SHUT-OFF - Honing cycle will end when needle on Honing Indicator reaches zero. This corresponds to a consistent feed system position. If stone and shoe wear are negligible or properly compensated, then this position will correspond to a consistent final bore size.
 - ASC - Automatic Size Control unit will determine when honing cycle is complete by checking workpiece bore size with a plug gage type probe once every stroke.

11. STROKING - Three position selector switch sets stroking mode:
 - MANUAL - Stroker will not operate in this mode. Stroking must be done manually. Honing cycle can be started only with Foot Pedal.
 - UNLATCH - In this mode Stroker Carriage is disengaged from power stroking unit. This mode is used only during setup. Machine will not run in this mode.
 - AUTOMATIC - Stroker will operate during honing cycle at speed and stroke length selected. Cycle can be started with Foot Pedal or CYCLE START button.

12. FINISHING FEED FORCE - Three position selector switch sets Finishing Feed Force mode:
 - OFF - Finishing Feed Force is not used. Feed Force remains at level set with Roughing Feed Force Dial throughout entire honing cycle. If selected, feed system will be at roughing feed force level when not honing.
 - AUTOMATIC - Stroker will operate during honing cycle at speed and stroke length selected. Cycle can be started with Foot Pedal or CYCLE START button.

13. EXTRA STROKES - After size control device (either Zero Shut-Off or ASC) signals completion of honing cycle, honing cycle will continue for number of strokes shown on display before stopping. Return-to-center selector switch changes number of extra strokes up or down to a maximum of 99.

14. SPINDLE SPEED - Return-to-center selector switch changes spindle speed setting displayed above switch. Chart below recommends spindle speed in RPM based on workpiece bore diameter.

15. STROKER SPEED - Return-to-center selector switch changes stroker speed setting displayed above switch. Chart below recommends stroker speed in SPM (strokes per minute) based on stroke length.
TABLE 2-1, Symbols used on Operator Controls (CE Machines)

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>DESCRIPTION</th>
<th>SYMBOL</th>
<th>DESCRIPTION</th>
<th>SYMBOL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. POWER OFF</td>
<td></td>
<td>8. FEED</td>
<td></td>
<td>12. FINISHING FORCE</td>
</tr>
<tr>
<td></td>
<td>2. POWER ON</td>
<td></td>
<td>8. EXPAND TOOL FEED</td>
<td></td>
<td>12. FINISHING FEED FORCE OFF</td>
</tr>
<tr>
<td></td>
<td>3. STROKER JOG</td>
<td></td>
<td>8. RETRACT TOOL FEED</td>
<td></td>
<td>12. AFTER ROUGH TO FINISH DIAMETER</td>
</tr>
<tr>
<td></td>
<td>4. CYCLE STOP</td>
<td></td>
<td>9. EMERGENCY STOP</td>
<td></td>
<td>12. DURING EXTRA STROKES ONLY</td>
</tr>
<tr>
<td></td>
<td>5. CYCLE START</td>
<td></td>
<td>10. SIZE CONTROL</td>
<td></td>
<td>13. EXTRA STROKES</td>
</tr>
<tr>
<td></td>
<td>6. COOLANT</td>
<td></td>
<td>10. SIZE CONT. ZERO SHUT-OFF</td>
<td></td>
<td>14. SPINDLE SPEED</td>
</tr>
<tr>
<td></td>
<td>6. CONSTANT COOLANT FLOW</td>
<td></td>
<td>10. ASC (AUTO SIZE CONTROL)</td>
<td></td>
<td>15. STROKER SPEED</td>
</tr>
<tr>
<td></td>
<td>6. COOLANT ON DURING CYCLE ONLY</td>
<td></td>
<td>11. STROKING</td>
<td></td>
<td>41. BLIND BORE FEATURES</td>
</tr>
<tr>
<td></td>
<td>7. ASC PROBE</td>
<td></td>
<td>11. MANUAL STROKING</td>
<td></td>
<td>11. AUTOMATIC STROKING</td>
</tr>
<tr>
<td></td>
<td>7. Moves Probe Up</td>
<td></td>
<td>11. UNLATCH WORKPIECE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. Moves Probe Down</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
16. STROKE LENGTH INDICATOR & LOCK - Index mark on clear piece indicates stroke length setting. Tightening handle locks stroke length in place. Loosening handle frees stroker for setting a different stroke length with STROKE LENGTH Handwheel.

17. STROKE LENGTH - Handwheel changes stroke length as indicated by index piece when handle is unlocked. A Stroke Length Guide printed on front panel shows how to use bore length and stone length to determine proper stroke length for most applications.

18. ROUGHING FEED FORCE - Sets roughing feed force level as indicated on dial above knob. • Knob may be difficult to turn if FINISHING FEED FORCE selector switch is set to OFF. Also, Roughing Feed Force Dial can never be set to a value below value shown on Finishing Force Dial, even if Finishing Force is not being used.

19. FINISHING FEED FORCE - Sets finishing feed force level as indicated on dial above knob. • Knob may be difficult to turn if AFTER ROUGH TO FINISH or DURING EXTRA STROKES ONLY is selected on FINISHING FEED FORCE selector switch. Also, Finishing Feed Force Dial can never be set to a value above value shown on Roughing Force Dial.

20. ROUGH > FINISH DIAMETER - When AFTER ROUGH TO FINISH is selected on operator station, this knob sets feed system position at which feed force changes from roughing to finishing. If stone and shoe wear are negligible or properly compensated then this position corresponds to a consistent bore diameter. Turning clockwise makes feed force change at a smaller diameter (more finishing). Turning counterclockwise makes feed force change at a larger diameter (less finishing). Light to left of knob will be on when machine is in finishing during honing cycle. During setup, light will be on anytime needle on honing dial is below selected change position, or it will be on if DURING EXTRA STROKES ONLY is selected.

21. HONING TOOL / INDICATOR SCALE SELECTOR - Four position selector switch sets Honing Indicator for honing tool used and indicator scale desired.

22. HONING INDICATOR - Needle shows feed system position. This position corresponds to amount of stock to be removed from bore diameter if Zero Shut-Off is size control mode. Two scales have different levels of magnification. "A" scale shows stock removal up to 240µ (.009") and "B" scale shows stock removal up to 480µ (.018").

23. STONE FEED - Handwheel feeds up tool to set amount of stock removal, to adjust final bore size, and to compensate for stone wear manually. Three scales are color coded to match three sets of tool families displayed in HONING TOOL box above. Counterclockwise rotation (increasing numbers) feeds tool to a larger diameter.

24. AUTOMATIC STONEWEAR COMPENSATOR ADJUSTMENT - When used, Automatic Stoneware Compensator will automatically index Stone Feed Dial to compensate for stonewear. If size control mode is Zero Shut-Off, this indexing will occur at beginning of each cycle. (Unless previous cycle was
halted by depressing CYCLE STOP.) If size control mode is ASC, this indexing will occur only when needle on Honing Indicator reaches zero. Rotating adjustment knob counterclockwise increases amount of stonewear compensation. Rotating adjustment knob clockwise decreases amount of stonewear compensation. Rotating clockwise until knob stops will turn off Automatic Stonewear Compensator.

25. AUTOMATIC STONEWEAR COMPENSATOR CHECK - To check amount of Automatic Stonewear Compensation, press this button and hold it in until Stone Feed Dial stops moving. Observe amount of feed up on dial.

26. FEED REGULATOR MAXIMUM RATE - Feed Regulator is a system to limit maximum rate of feed. MAXIMUM RATE dial is turned to set maximum feed rate limit. On numbered scale larger numbers indicate faster maximum rates. Setting dial to "9" or higher will effectively turn off regulator. (Note: This system is similar to STONE SAVER feature on earlier model Sunnen Honing Machines.)

27. FEED REGULATOR INITIAL DIAMETER - This knob sets feed system position at which Feed Regulator begins to limit maximum feed rate. If stone and shoe wear are negligible or properly compensated then this position corresponds to a consistent tool diameter. Counterclockwise rotation reduces diameter where Feed Regulator starts (longer regulated honing cycle). Clockwise rotation increases diameter where Feed Regulator starts (shorter regulated honing cycle). Turning knob clockwise until it stops will turn off Feed Regulator System.

28. FOOT PEDAL - Depressing Foot Pedal will start honing cycle if power is ON. Feed system (wedge) travel is controlled by foot pedal so that speed at which stone contacts workpiece bore is related to speed of operator's foot. Likewise, raising foot will move wedge back. If STROKING is set to MANUAL, spindle will run only when Pedal is depressed and honing cycle will stop when Foot Pedal is released. If STROKING is set to AUTOMATIC, Foot Pedal will control feed until it is completely depressed. As soon as Foot Pedal is at bottom of its travel, feed system will be controlled by machine and foot pedal can be released without stopping cycle. Releasing foot pedal prior to that point will stop cycle.

29. STROKE POSITION LOCK - This hand lever tightens a screw to lock stroker in position. To adjust stroke position, this hand lever screw must be loosened.

30. STROKE POSITION HANDWHEEL - When Stroker Position Lock is loosened, this handwheel changes position of stroke relative to spindle and honing tool. Graduations are in millimeters. Turning in direction of increasing numbers moves carriage out away from spindle.

31. MASTER ON/OFF SWITCH - Disconnects power from switch to components in electrical enclosure. Enclosure doors cannot be opened with this switch in ON position.

31a. STROKER DISABLE SWITCH (CE & CD models only) - This key switch can be turned to disable stroker for manual honing. When DISABLE is selected automatic stroker cannot run and light curtain is also disabled.
32. ASC UNIT CLAMP - Turning this knob clockwise locks Automatic Size Control unit in place. Counterclockwise rotation frees unit so that it can be positioned to gage workpiece at end of stroke. With further loosening, entire ASC unit can be removed from machine.

33. ASC FINE POSITION SCREW - Adjusts position of ASC unit. Clockwise rotation moves ASC unit closer to workpiece 1mm per revolution. This direction of rotation is matched to STROKE POSITION HANDWHEEL rotation for ease of adjustment after making a stroke position adjustment. A knurled locknut holds screw in place after making adjustment.

34. PROBE BODY CLAMP KNOB - Locks ASC Probe Body to actuator arm. When loosened probe body can be aligned with workpiece bore, then locked in position.

35. COOLANT MANIFOLD - Valves regulate flow of coolant through each of four coolant lines, and one Main Valve controls total amount of coolant flow.

36. SPINDLE SPLASH GUARD - Attaches to rear of stroker carriage with a knurled thumb screw. Contains coolant spinning off spindle in most applications. May have to be removed if stroker carriage must stroke too close to spindle housing.

N/S STROKER DISABLE SWITCH (CE & CD models only) - This key switch can be turned to disable stroker for manual honing. When DISABLE is selected automatic stroker cannot run and light curtain is also disabled.

N/S SPINDLE REVERSE SWITCH (Models equipped with ML7000 Kit) - This key switch can be turned to reverse spindle. When REVERSE is selected spindle will reverse at finish feed position of cycle.

N/S GREEN PILOT LIGHT - Indicates when spindle reverse is enabled.

37. REMOTE CYCLE START BUTTONS - Pressing these buttons will start a honing cycle. These buttons are optional equipment and are not supplied on all models.

TABLE 2-2, Safety Symbols

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>DESCRIPTION</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Warns that an electrical hazard exists.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Designates this machine is “CE” compliance.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Warns that no drilling is allowed. Drilling any new holes may void warranty.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Warns that a physical hazard exits, and that proper precautions should be taken.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Warns that a finger hazard exists. Do not touch while stroker is operating.</td>
<td></td>
</tr>
<tr>
<td> (Light)</td>
<td>Warns that power must be OFF when belt guard is opened, to prevent injury.</td>
<td></td>
</tr>
<tr>
<td> (Safety Glasses)</td>
<td>Warns that safety glasses should be worn at all times when operating this machine.</td>
<td></td>
</tr>
<tr>
<td> (Use Fixture)</td>
<td>Warns that a holding fixture should be used to secure part when manual honing.</td>
<td></td>
</tr>
<tr>
<td> (Do Not Hold)</td>
<td>Warns that part should not be held in hand for honing.</td>
<td></td>
</tr>
<tr>
<td> (Foot Pedal)</td>
<td>Warning.</td>
<td></td>
</tr>
<tr>
<td> (Foot Pedal)</td>
<td>General Warning.</td>
<td></td>
</tr>
<tr>
<td> (Spindle Reversal)</td>
<td>Designates this machine is equipped with spindle reverse. (Proper tooling is required. Contact your local Sunnen Field Service Engineer for application information.)</td>
<td></td>
</tr>
</tbody>
</table>
The Programmable Stroker Control (PSC) feature allows the user to perform two unique honing operations with the ML-5000 system. The PSC feature allows the user to "Dwell," or pause, the stroker carriage during the honing cycle. The user can specify the carriage to dwell at either end of the workpiece. The user can control the duration of the dwell. The other feature included in the PSC menu is Short Stroke. Similar to Dwell, the Short stroke is used to remove more material from one end of the workpiece. When enabled, the Short Stroke feature creates a miniature honing stroke at one end of the part. This mini honing stroke removes more material than the dwell option. Both of these features can be easily modified to fit a particular application.

The Cycle Time Control (CTC) feature has been designed to maintain the cycle time of the honing process by controlling the roughing honing pressure. This keeps the honing stone in a free cutting state and eliminates the "glazing" effect, which can some times occur. The user is able to monitor and control the minimum and maximum honing cycle times, batch size and amount of compensation. As the system monitors the honing process, it counts any non-conforming cycles and makes an adjustment once the number of non-conforming cycles reaches the lot size.

A brief list of the control operations of the touch display is listed below. To change any setting, use the up / down arrow to scroll to the proper menu screen. Press Enter and the value will flash. Use the up / down arrows to change the value. Press Enter again to confirm the value. If a second value flashes, you can change its value or press enter to confirm.

- F1-Enables / Disables the Programmable Stroker Control (PSC). This can occur during a cycle.
- F2-Enables / Disables the Cycle Time Control (CTC). This can occur during a cycle.
- F3-Selects the Dwell mode.
- F4-Selects the Short Stroke mode.
- F5-Selects the Front of bore. (press the shift key and then F1/F5)
- F6-Selects the Back of bore. (press the shift key and then F2/F6)
- F7-Resets the cycle counter. (press the shift key and then F3/F7)
- F8-Allows the user to test the CTC adjustment to observe how dramatically the roughing pressure will change. (press the shift key and then F4/F8)
- UP / Down Arrows- Allow the user to scroll through the menu options.

SAFETY SYMBOLS
For a description of safety symbols used on this machine, refer to Table 2-2.

WORKHOLDING FIXTURE
Fixtures used on these machines are custom made for each job (refer to Appendix E).
4. Set Spindle Speed to 200 rpm.

WARNING

Do not attempt to adjust mandrel runout at any speed higher than 200 rpm.

5. Depress Foot Pedal fully to start spindle with alignment bushing on mandrel. If runout is excessive, center honing unit following steps 6 & 7. If runout does not seem excessive proceed mandrel runout adjustment is complete.

6. With bushing or sleeve rotating on honing unit, touch a marking pencil to sleeve to indicate high side. Turn FEED selector to EXPAND. This stops spindle while keeping sleeve locked on mandrel. This also will disable Foot Pedal to prevent accidental starting.

7. Loosen numbered set screw on spindle nose that is on same side as high pencil mark and tighten screw on opposite side.

8. Turn FEED selector to RETRACT and repeat steps 5-7 as necessary until minimum runout is obtained.

TRUING MANDREL & STONE

True mandrel and stone as follows:

NOTE: Adjust for mandrel runout before truing mandrel and stone.

1. For safety start truing with a very low Roughing Feed Force: 1: For tools smaller than 6 mm (.25 in.)
 1.1: For larger tools
2. Place a truing sleeve, or suitable undersized workpiece, in a torque absorbing fixture and on mandrel.

3. Set FEED selector to EXPAND and turn STONE FEED DIAL until HONING INDICATOR shows a reading.

4. Return FEED selector to RETRACT.

5. Set COOLANT selector to CONSTANT.

6. Slowly open main coolant valve on coolant manifold until there is flow at one or more coolant nozzle. Wet shoes and stone with coolant, then turn coolant off.

7. Center truing sleeve over stone and shoes. Grasp truing sleeve and holding fixture firmly with your left hand and slowly depress foot pedal.

8. As mandrel begins its rotation, stroke truing sleeve forward and back. Use short strokes at first, then gradually lengthen strokes until stroke is about as long as sleeve or stone whichever is longer.

9. Reverse truing sleeve frequently.

WARNING

Always release pedal before removing truing sleeve or workpiece from tool.

10. If honing indicator needle is not moving and feed force feels too light, then stop and increase Roughing Feed Force by a small amount.

11. If needle on honing indicator goes below zero, then stop and feed stone up.

12. If mandrel dries out, apply a little more coolant.

13. Concentrate truing on area where you feel most pull or resistance.

14. Frequently stop and examine shoes and stone. For most applications at least a full line of contact should be seen on stone and both shoes. If wear does not show sufficient contact use truing sleeve some more (see Figure 2-8).

NOTE: When using keyway mandrels, stone and shoes must fully radius to within 0,13 mm (.005") before bores with keyways can be honed.

15. When finished truing return STROKER key switch to ENABLE and remove key.

RUNOUT - CONICAL & PARALLEL

Eliminate conical and parallel spindle runout as follows:

NOTE: Mandrel runout should be adjust; and mandrel and stone should be trued before adjusting for conical and parallel runout.

1. Select a concentric alignment bushing with a bore size close to final honed bore size (see Sunnen Honing Supplies Catalog). Place alignment bushing on mandrel so that it is centered on stone and shoe section of mandrel (see Figure 2-9).
WARNING
Do NOT step on foot pedal to lock alignment bushing on mandrel. Spindle will turn if foot pedal is depressed.

2. Turn FEED selector to EXPAND to lock alignment bushing on mandrel. Look to Honing Indicator. If needle reads somewhere on scale then alignment bushing is properly locked on. If not turn STONE FEED DIAL until there is an indicator reading. (Turn Dial same direction as you wish needle to move.)

3. Release stroker carriage and pull it out toward front of work area.

4. Attach RUNOUT INDICATOR supplied with machine to threaded stroker drive shaft as shown (see Figure 2-10). Position aluminum indicator base so that letters "EC" are up and facing you, with that surface approximately level. Move clamp handle until plastic cone on cam grips threaded stroker drive shaft.

5. Note reference gaging point and indicating gaging point on indicator (see Figure 2-11). They should be spaced as far apart as possible without exceeding length of alignment bushing. If necessary, remove Knob A (reference gage point) by unscrewing it and inserting it in another hole. Sliding Block will slide out to provide even greater separation of gaging points.

TABLE 2-3, ASC Sensing Tips

<table>
<thead>
<tr>
<th>SENSING TIP PART NUMBER</th>
<th>NOMINAL DIAMETER</th>
<th>NOMINAL DIAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>INCHES</td>
<td>MILLIMETERS</td>
</tr>
<tr>
<td></td>
<td>LOW</td>
<td>HIGH</td>
</tr>
<tr>
<td></td>
<td>LOW</td>
<td>HIGH</td>
</tr>
<tr>
<td>ASC-0125</td>
<td>1/8</td>
<td>0.120</td>
</tr>
<tr>
<td>ASC-0141</td>
<td>5/32</td>
<td>0.155</td>
</tr>
<tr>
<td>ASC-0451</td>
<td>3/8</td>
<td>0.185</td>
</tr>
<tr>
<td>ASC-0172</td>
<td>7/32</td>
<td>0.211</td>
</tr>
<tr>
<td>ASC-0188</td>
<td>1/4</td>
<td>0.240</td>
</tr>
<tr>
<td>ASC-0203</td>
<td>17/64</td>
<td>0.256</td>
</tr>
<tr>
<td>ASC-0219</td>
<td>7/32</td>
<td>0.269</td>
</tr>
<tr>
<td>ASC-0224</td>
<td>15/64</td>
<td>0.285</td>
</tr>
<tr>
<td>ASC-0250</td>
<td>1/4</td>
<td>0.304</td>
</tr>
<tr>
<td>ASC-0266</td>
<td>17/64</td>
<td>0.326</td>
</tr>
<tr>
<td>ASC-0281</td>
<td>9/32</td>
<td>0.365</td>
</tr>
<tr>
<td>ASC-0297</td>
<td>3/16</td>
<td>0.390</td>
</tr>
<tr>
<td>ASC-0312</td>
<td>5/16</td>
<td>0.426</td>
</tr>
<tr>
<td>ASC-0328</td>
<td>21/64</td>
<td>0.443</td>
</tr>
<tr>
<td>ASC-0344</td>
<td>11/32</td>
<td>0.480</td>
</tr>
<tr>
<td>ASC-0359</td>
<td>23/64</td>
<td>0.515</td>
</tr>
<tr>
<td>ASC-0375</td>
<td>3/8</td>
<td>0.540</td>
</tr>
<tr>
<td>ASC-0391</td>
<td>25/64</td>
<td>0.565</td>
</tr>
<tr>
<td>ASC-0406</td>
<td>13/32</td>
<td>0.600</td>
</tr>
<tr>
<td>ASC-0422</td>
<td>27/64</td>
<td>0.635</td>
</tr>
<tr>
<td>ASC-0438</td>
<td>7/16</td>
<td>0.660</td>
</tr>
<tr>
<td>ASC-0453</td>
<td>29/64</td>
<td>0.695</td>
</tr>
<tr>
<td>ASC-0469</td>
<td>15/32</td>
<td>0.730</td>
</tr>
<tr>
<td>ASC-0484</td>
<td>31/64</td>
<td>0.765</td>
</tr>
<tr>
<td>ASC-0500</td>
<td>1/2</td>
<td>0.800</td>
</tr>
<tr>
<td>ASC-0516</td>
<td>33/64</td>
<td>0.835</td>
</tr>
<tr>
<td>ASC-0531</td>
<td>17/32</td>
<td>0.870</td>
</tr>
<tr>
<td>ASC-0547</td>
<td>25/64</td>
<td>0.905</td>
</tr>
<tr>
<td>ASC-0562</td>
<td>9/16</td>
<td>0.940</td>
</tr>
<tr>
<td>ASC-0578</td>
<td>37/64</td>
<td>0.975</td>
</tr>
<tr>
<td>ASC-0594</td>
<td>19/32</td>
<td>1.010</td>
</tr>
<tr>
<td>ASC-0609</td>
<td>26/64</td>
<td>1.045</td>
</tr>
<tr>
<td>ASC-0625</td>
<td>5/8</td>
<td>1.080</td>
</tr>
<tr>
<td>ASC-0630</td>
<td>-</td>
<td>1.125</td>
</tr>
<tr>
<td>ASC-0641</td>
<td>41/64</td>
<td>1.160</td>
</tr>
<tr>
<td>ASC-0656</td>
<td>21/32</td>
<td>1.195</td>
</tr>
<tr>
<td>ASC-0672</td>
<td>43/64</td>
<td>1.230</td>
</tr>
<tr>
<td>ASC-0688</td>
<td>11/16</td>
<td>1.265</td>
</tr>
<tr>
<td>ASC-0703</td>
<td>45/64</td>
<td>1.300</td>
</tr>
<tr>
<td>ASC-0719</td>
<td>23/32</td>
<td>1.335</td>
</tr>
<tr>
<td>ASC-0734</td>
<td>47/64</td>
<td>1.370</td>
</tr>
<tr>
<td>ASC-0750</td>
<td>3/4</td>
<td>1.385</td>
</tr>
<tr>
<td>ASC-0766</td>
<td>49/64</td>
<td>1.420</td>
</tr>
<tr>
<td>ASC-0781</td>
<td>25/32</td>
<td>1.455</td>
</tr>
<tr>
<td>ASC-0797</td>
<td>51/64</td>
<td>1.490</td>
</tr>
<tr>
<td>ASC-0812</td>
<td>13/16</td>
<td>1.525</td>
</tr>
<tr>
<td>ASC-0828</td>
<td>53/64</td>
<td>1.560</td>
</tr>
<tr>
<td>ASC-0844</td>
<td>27/37</td>
<td>1.595</td>
</tr>
<tr>
<td>ASC-0859</td>
<td>55/64</td>
<td>1.630</td>
</tr>
<tr>
<td>ASC-0875</td>
<td>7/8</td>
<td>1.665</td>
</tr>
<tr>
<td>ASC-0891</td>
<td>57/64</td>
<td>1.699</td>
</tr>
<tr>
<td>ASC-0906</td>
<td>29/32</td>
<td>1.734</td>
</tr>
<tr>
<td>ASC-0922</td>
<td>54/64</td>
<td>1.769</td>
</tr>
<tr>
<td>ASC-0938</td>
<td>15/16</td>
<td>1.804</td>
</tr>
<tr>
<td>ASC-0953</td>
<td>61/64</td>
<td>1.839</td>
</tr>
<tr>
<td>ASC-0969</td>
<td>31/32</td>
<td>1.874</td>
</tr>
<tr>
<td>ASC-0984</td>
<td>63/64</td>
<td>1.909</td>
</tr>
<tr>
<td>ASC-1000</td>
<td>1</td>
<td>1.944</td>
</tr>
<tr>
<td>ASC-1016</td>
<td>1-1/64</td>
<td>1.980</td>
</tr>
</tbody>
</table>

FIGURE 2-10, Runout Indicator

FIGURE 2-11, Runout Indicator Gaging Point

FIGURE 2-12, Sensing Tip
6. Position stroker carriage so that gaging points will contact alignment bushing.

7. Move pivot lock lever to "Release" position so that entire indicator will follow alignment bushing by contact of reference gaging point.

8. With pivot lock lever in "Release" position, Runout Indicator is now set to measure conical runout of honing unit. Rotate spindle by hand while observing indicator. If necessary turn Knob A to get an indicator reading. Turn spindle until high point is found. Loosen nearest lettered screw (A-B-C-D) on front of spindle nose, and tighten screw on opposite side. Repeat this procedure until conical runout is within acceptable limits. (Conical runout of less than two divisions on indicator is acceptable for most honing applications. For close tolerance applications, conical runout should be less than one division.)

9. With runout indicator remaining on alignment bushing, move pivot lever to "Lock", and turn Knob A counterclockwise two or three revolutions.

10. With pivot lock lever in "Lock" position, Runout Indicator is now set to measure parallel runout of honing unit. Rotate spindle by hand while observing Runout Indicator. If necessary turn Knob B to get an indicator reading. Turn spindle until high point is found. Loosen nearest numbered screw (1-2-3-4) on rear of spindle nose, and tighten screw on opposite side. Repeat this procedure until parallel runout is within acceptable limits. (Parallel runout of less than two divisions on indicator is acceptable for most honing applications. For close tolerance applications, parallel runout should be less than one division.)

11. Conical runout should not be affected by adjustment of parallel runout, however it is a good practice to double check conical runout again. If amount of parallel adjustment was large then conical runout may have changed slightly. If it is necessary to readjust conical runout, then always recheck parallel runout after that.

12. Remove indicator from threaded stroker drive shaft.

13. Set FEED selector to RETRACT and remove alignment bushing.

AUTOMATIC SIZE CONTROL

Set Automatic Size Control (ASC) Unit as follows:

1. If ASC Unit has been removed from machine, then it must be installed.

NOTE: If setting up ASC for first time on a new machine, it may be necessary to adjust ASC unit. (Only necessary for a new machine or a new ASC unit.)

2. Select and adjust proper Sensing Tip or Sensing Tip Unit for final bore size to be gaged (see Table 2-3 & Figure 2-12).

NOTE: A sensing tip is adjustable to any size within its diameter range. However, once adjusted to a bore size near maximum, sensing tip may take a permanent set and not return to minimum sizes. Therefore it may be necessary to have more than one sensing tip if you have more than one application with different sizes within same diameter range. Also, changeover time from one job to next will be minimized if, once adjusted, a sensing tip is dedicated to one particular application only.

All four segments of sensing tip or sensing unit must contact taper on adjustment screw. If one or more segments has been bent away from screw, then back out screw and squeeze sensing tip back into shape.

If final bore size is smaller than 26 mm (1.03") skip steps 3 through 10 and go to step 11.

3. If using Sensing Unit, back out adjustment screw until it is loose in sensing body. Then tighten this screw one full turn after initial contact is made between tapered portion of adjusting screw and sensing body. This initial setting of adjustment screw will allow you to increase or decrease sensing unit size when final size adjustment is made.

4. Determine proper micrometer setting for ASC-50 Setting Fixture or ASC-50M Metric Setting Fixture by following formula:

\[
\text{[Desired Bore Size - 1" (or 25.4mm)] } \div 2
\]

Set micrometer to this size and lock micrometer spindle.

5. Adjust sensing screws in sensing body so that size is somewhat smaller than desired bore size. Insert sensing unit into setting fixture (see Figure 2-13).

6. Line up one of four screws with micrometer spindle and tighten clamp screw on setting fixture. As you tighten clamp screw, press downward on sensing unit as shown (refer to Figure 2-13). Downward force assures that sensing unit is flat against frame of setting fixture. This is necessary for best accuracy.

With wrenches provided, adjust sensing screw to just touch micrometer spindle tip and tighten locking nut.

Repeat step for each sensing screw.

7. Note micrometer reading. Loosen micrometer spindle lock, and back off spindle. Check each of four sensing screws with micrometer ratchet. All sensing screws should read within 0.03 mm (.001"). Be sure to hold sensing unit flat on setting fixture frame each time you tighten clamp screw.
8. Back off adjustment screw slightly so that first part honed will be undersized rather than oversized if there was any inaccuracy in setting.

9. Sensing tip or sensing unit is adjusted by turning adjustment screw inside stem of tip with a 1/16" hex wrench. Sensing tip or sensing unit can be set to size with a micrometer or by inserting it into a workpiece that has already been honed to final size. Set adjustment screw so that sensing tip lightly drags on honed bore. Then back off adjusting screw about 1/4 turn. This will make first part honed undersized by approximately 0.025 mm (.001”).

NOTE: Final size can be adjusted after first workpiece by either turning adjustment screw or by changing number of Extra Strokes displayed on operator panel.

10. Screw Sensing Tip or Sensing Unit on to stud on Probe Body (see Figure 2-14). If required, use Probe Extension to reach into counterbore in workpiece or reach past fixturing.

11. Press STROKER JOG and hold in to get stroker to front of stroke.

12. Turn spindle by hand until shoes are up and then place a workpiece on mandrel.

WARNING

Keep hands away from ASC unit when turning ASC Probe Selector to move ASC probe up or down.

13. Make sure that ASC unit is a safe distance from honing tool, and with hands away from work area, turn ASC PROBE selector to UP.

14. Loosen Clamp Screw on ASC unit and slide unit up to workpiece. Sensing Tip should be depressed about 3 mm (1/8”). Tighten Clamp Screw.

NOTE: If desired, use Stop Clamp supplied with ASC unit to allow quick return to ASC setup position again if unit needs to be moved back along Rail for honing tool runout adjustment or replacement. Attach Stop Clamp to ASC Rail against back of ASC unit with supplied brass tipped set screw.

15. Loosen locknut on ASC Fine Position Screw. Look through hole near top of ASC arm to red light on proximity switch. Turn ASC Fine Position Screw until point is reached where light is just turned on. From that point, turn ASC Fine Position Screw 1-1/2 turns clockwise. Tighten locknut on Fine Position Screw.

16. Loosen Probe Body Clamp Knob and move whole Probe Body to center Sensing Tip on workpiece bore. Tighten Probe Body Clamp Knob.

17. Press STROKER JOG repeatedly to see how Sensing Tip engages bore and to see if Proximity Switch is being made at end of stroke. It may be necessary to reposition Probe Body or to adjust Fine Position Screw.

18. Return ASC PROBE selector to DOWN.

STOCK REMOVAL RATE

Set ROUGH to FINISH DIAMETER and stock removal rate as follows:

NOTE: Changing level of feed force changes amount of compression in feed rod inside machine. This makes needle on Honing Indicator move. The following steps are necessary to compensate for this needle movement when feed force changes from roughing to finishing.

1. With a measured workpiece seated on mandrel, turn STONE FEED dial until needle on Honing Indicator is near zero.

2. Turn FINISHING FEED FORCE selector to OFF and then again to AFTER ROUGH TO FINISH DIAMETER a couple of times to help "seat" feed system and wedge. Return selector to AFTER ROUGH TO FINISH DIAMETER.

3. Turn STONE FEED dial up until needle on Honing Indicator reads amount of stock that you want removed during finishing stage.

NOTE: See Appendix A for guidelines on how much finishing stock to set.

4. Turn FINISHING FEED FORCE selector to OFF. Needle on Honing Dial will drop some. Do not turn STONE FEED dial to move it up again.

5. Turn ROUGH -> FINISH DIAMETER knob fully counterclockwise. Light next to knob should now be off. If it is not on then try using "B" indicator scale. Turn INDICATOR SCALE / HONING TOOL selector to "B" scale for tool you are using and go back to step 55a. If indicator scale selected is already "B" and light is not off with ROUGH -> FINISH DIAMETER knob rotated fully counterclockwise, then either Finishing Force selected is too low, or finishing stock removal amount is too small for this finishing feed force mode to work properly. If this is case you must either increase finishing stock removal, or decrease difference between roughing and finishing forces, or use "During Extra Strokes Only" method.
6. Turn ROUGH -> FINISH DIAMETER knob slowly clockwise until light next to it just turns on. Trigger point is now set.

7. Turn then FINISHING FEED FORCE selector to AFTER ROUGH TO FINISH DIAMETER.

8. Turn stone feed dial until needle on Honing Indicator reads amount of stock to be removed from diameter of workpiece on mandrel.

NOTE: There is some backlash in STONE FEED dial. For best accuracy in setup, always turn dial until Honing Indicator reads some amount less than stock removal and then feed up (counterclockwise) until needle reads correct amount of stock removal.

FEED REGULATOR

Use of FEED REGULATOR is optional. If it is not to be used on this application, then skip this step. (Refer to Appendix A for guidelines on when Feed Regulator may be beneficial.) To set FEED REGULATOR, proceed as follows:

1. Turn MAXIMUM RATE dial to slowest speed.

2. Turn INITIAL DIAMETER knob counterclockwise about two turns.

3. With workpiece removed from tool, turn FEED selector to EXPAND while watching Honing Indicator. Needle will drop quickly to initial diameter point and then move very slowly. If point that needle stops is not desired point, then turn FEED selector to RETRACT, adjust INITIAL DIAMETER knob, and expand again while watching indicator.

NOTE: To use FEED REGULATOR efficiently, initial diameter should be set to a point just smaller than smallest starting bore diameter that you expect to encounter. It may be necessary to measure several workpieces to know how they will vary. Set initial diameter to point where Honing Indicator reads difference between initial diameter and final bore size. There are trade-offs to setting this initial diameter. If it is too large, a workpiece slightly smaller than expected may be contacted at full feed force, possibly damaging stone or tool. If initial diameter is set too small, cycle time gets excessively long with significant time spent just "cutting air". Use your best judgement based on your knowledge of variability of starting diameter of workpieces.

When using Feed Regulator at higher feed forces, "Initial Diameter" (where needle begins to slow down on Honing Indicator) may appear different during a cycle than it did when it was set by recommended procedure. This is normal behavior caused by amount of compression in feed system. However, this indicates that stones are contacting workpiece bore immediately after cycle begins although not at full feed force selected. If this initial contact still seems too rough, then turn Initial Diameter knob counterclockwise some to make Feed Regulator begin at a smaller diameter. When using FINISHING FEED FORCE set to AFTER ROUGH TO FINISH DIAMETER: When feed force changes from roughing to finishing needle on honing indicator rises, as observed when setting ROUGH -> FINISH DIAMETER. Amount of this needle shift can be subtracted from initial diameter when setting FEED REGULATOR. This will save cycle time.

4. Turn FEED selector to EXPAND. Watching Honing Indicator, turn up MAXIMUM RATE dial until desired speed is reached.

5. Turn FEED selector to RETRACT.

AUTOMATIC STONEWEAR COMPENSATOR

Use of AUTOMATIC STONEWEAR COMPENSATOR is optional. If it will not be used, then skip this step. To set AUTOMATIC STONEWEAR COMPENSATOR, proceed as follows:

NOTE: If using ASC, it is recommended that Automatic Stonewear Compensator be used. If it is not, it will be necessary to manually advance STONE FEED dial to keep feed system operating in a range where needle on Honing Indicator can be observed and where feed system can deliver its full selected feed force.

When starting a new application where stonewear is not known, it is recommended that several workpieces be honed without Compensator on so that an accurate estimate of stonewear can be determined.

1. Write down or make a mental note of position of STONE FEED dial.

2. Turn Knob on AUTOMATIC STONEWEAR COMPENSATOR counterclockwise some to turn it on.

3. Press "check" button and hold it in until STONE FEED dial stops moving. Release button and note new Feed Dial Position.

NOTE: Be sure to read appropriate scale for honing tool family selected.

4. If amount STONE FEED dial moved was not amount of stonewear expected for each workpiece, then adjust knob accordingly and press "check" button again. Repeat until compensator is advancing STONE FEED dial by correct amount.

NOTE: When using ASC with FINISHING FEED FORCE set to OFF or EXTRA STROKES ONLY it is not necessary to have Compensator set to exact stonewear amount. Compensator will actuate any time that needle on Honing Indicator reaches zero, provided that compensator is not turned off. However, be careful not to set compensator too low relative to cutting rate, or else it will not be able to keep up with rate of stock removal.
When using ASC with FINISHING FEED FORCE set to AFTER ROUGH TO FINISHING DIAMETER, compensator should be set to approximately 1/4 to 1/2 of expected stonewear to keep Two-Stage Feed Force feature operating properly every cycle. Compensator will probably actuate more than once each cycle, but amount of stock removed during finishing will be relatively consistent. However, be careful not to set compensator too low relative to cutting rate, or else it will not be able to keep up with rate of stock removal.

5. Return STONE FEED dial to position it was at when you started.

NOTE: STONE FEED dial has some backlash. When you feed back down, always feed down beyond and then up to point desired.

WARNING

DO NOT WEAR COTTON OR HEAVY GLOVES WHILE OPERATING THIS EQUIPMENT! IF GLOVES MUST BE WORN, WEAR ONLY THE TEAR-AWAY TYPE.
SECTION 3
SETUP & OPERATION

GENERAL
This section gives step-by-step setup and operating procedures for Sunnen® ML-5000 Power Stroked Honing Machine.

SAFETY PRECAUTIONS
The following precautions should be observed to ensure maximum safety while working on or around your Machine.

- Wear proper Safety Items (such as safety glasses and other personal safety equipment as necessary or required).
- Do not wear cotton or heavy gloves while operating this equipment! If gloves must be worn, wear only the tear-away type.
- DO NOT wear loose fitting clothes or jewelry while working on or around Machine.
- Keep area around Machine free of paper, oil, water and other debris at all times.
- Keep Machine and area around machine cleaned of excessive lubricant and lubricant spills.
- Keep tools and other foreign objects clear of Machine while in operation.
- Keep tools clean and in their proper storage compartments to maintain them in proper working condition and to prolong tool life.
- Inspect Tools before using. Check for cracks, burrs or bent parts that might effect operation.
- DO NOT force tools when operating. Tools will do a better and safer job when operated at the rate for which they were designed.
- Turn OFF electrical power when performing service on your machine, which does not require power.
- Disconnect Machine from main power supply and allow drives to drain before any work is performed inside of Electrical Enclosure.
- Ensure all Guards are in place and are in proper working order.
- DO NOT override safety switches or lockouts. Where interlocking systems rely on special actuators or keys, DO NOT keep spare/master actuators or keys on, around or near machine.
- Use proper lifting procedures when loading and unloading the Machine.
- Keep all non-essential persons clear of work area. Visitors, especially children, should not be permitted near the work area.
- DO NOT use machine for other than its intended use. Using these Machines for other purposes could result in damage to machine and loss of warranty.
- Be sure to work in a well lit area and to use light supplied to avoid dangerous unseen conditions which may exist otherwise.
- Use ONLY factory authorized or recommended parts or replacement accessories. Using parts or accessories other than those approved by Sunnen could result in damage to machine and loss of warranty.
- Electrostatic discharge can damage the circuitry of the electronic components used in this Machine. Use proper electrostatic controls when working with or around electronic components. Ground Machine and use wrist strap to reduce the chances of static discharge.
- Residual Voltage exists for 2-3 minutes after Master ON/OFF Switch is turned OFF. Before working inside Enclosure, wait for all fans to stop running to allow drives to drain.

OPERATING TIPS
The ML-5000 can be setup and operated a number of different ways. The use of many features is optional. Not all features are beneficial in any given application. Appendix A explains some of these optional features and outlines some guidelines for determining when they might be beneficial. Usually experimentation will be required to find optimum setup.

Although ML-5000 is intended for production honing, manual stroked honing is possible. Manual honing should only be used for honing a very small number of workpieces such as for tooling or repairs. The ease of setting up stroker and fixture makes it practical to power stroke even as few as five or ten workpieces. Power stroking is always more precise, more consistent, and safer.

SETUP - MANUAL HONING
Follow ALL steps for manual honing carefully and in the order listed.
- ALWAYS start with Feed Force set to no more than 1.1 and Spindle Speeds set to no more than 1/2 of recommended speeds. The danger of manual honing increases as speed or feed force is increased.
- (For Models ML-5000CE and ML-5000CD): When finished manually honing, return Stroker Key Switch to ENABLE and remove Key, so that spindle can not start if an operator is in work area.
 1. Press Emergency Stop to clear any previous setup.
 2. Turn OFF coolant supply by turning Main Valve on Coolant Manifold fully clockwise.
 3. If ASC unit is attached to machine, loosen Clamp and slide unit out away from spindle. Turn ASC PROBE selector to DOWN. (Unit can also be removed from machine entirely.)
4. Set FINISHING FEED FORCE selector to OFF.
5. Set SIZE CONTROL selector to ZERO SHUT-OFF.
6. Set STROKER key switch to DISABLE. Set Stroking selector to MANUAL.
7. Set FEED selector to RETRACT.
8. Turn FEED REGULATOR off by turning INITIAL DIAMETER knob fully clockwise.
9. Turn AUTOMATIC STONEWEAR COMPENSATOR off by turning knob fully clockwise.
10. Remove Spindle Splash Guard.
11. Disengage Stroker Carriage from power stroking unit: Turn STROKING selector to UNLATCH. Then, pull Stroker Carriage forward to provide access to spindle.
12. Select correct honing unit and stone from Sunnen Honing Supplies Catalog.
13. Assemble Honing Unit according to instructions.
14. Set HONING TOOL / INDICATOR SCALE selector to position that matches tool being used and scale you wish to read.

NOTE: It is recommended that "A" scale be used unless stock removal is expected to be more than 240µ (.009"). Finer resolution on "A" scale gives a clearer indication of honing rate.

15. Turn STONE FEED dial clockwise until you meet resistance, then advance it counterclockwise approximately 10 turns.

CAUTION
Do not force STONE FEED DIAL or damage to feed system may result.

16. Pull Mandrel Wedge straight back as far as possible.
17. If required, install Spindle Sleeve (LN-570A, not supplied with machine) on Honing Unit.
18. Rotate spindle by hand until large set screw is up (12 o'clock position).
19. With set screw indentation on honing unit in 9 o'clock position, insert honing unit as far as it will go. Rotate honing unit 1/4 turn clockwise to engage wedge with feed rod, then push honing unit all way in until it bottoms.
20. Test wedge hookup by pulling honing unit straight out (do not rotate). If wedge is hooked up it will not allow unit to come out. If honing unit comes out, repeat step 19. Push honing unit back in until it bottoms.
21. Tighten large set screw in spindle.
22. Release Emergency Stop and turn power on.
23. Set Roughing Feed Force Dial to desired level.

NOTE: Roughing Feed Force cannot be adjusted to a value lower than Finishing Feed Force setting. It may be necessary to turn Finishing Feed Force Dial down so that Roughing Feed Force can be set to desired level.

If FINISHING FEED FORCE selector is set on OFF, Roughing Feed Force dial may be difficult to turn. If FINISHING FEED FORCE selector is set to AFTER ROUGH TO FINISH DIAMETER or to DURING EXTRA STROKES ONLY, then Finishing Feed Dial may be difficult to turn. During setup only you may turn this selector to position that frees feed force dial you are trying to turn. If you do this, remember always to return this selector to its original position after setting feed force.

CAUTION
When manually honing, always start at a low feed force for safety.

24. Reduce Mandrel Runout (refer to Section 2).
25. Set Spindle Speed. Use chart on operator station as a guideline for determining speed.

WARNING
Recommended speeds may not be suitable for all applications. For MANUAL HONING always start with a speed that is no more than half speed recommended on chart, then increase speed in small increments only when job seems to be running safely. Never exceed recommended speed when manually honing.

26. Position Stroker Carriage for manual honing:
 - Push Stroker Carriage back until it stops. Turn STROKING selector to MANUAL.

NOTE: Hand lever on stroker shaft must be up for internal stroker latch to engage properly.

27. Remove any fixturing components that do not provide adequate clearance for manual honing.
28. Install and position Torque Bar on stroker carriage so that work holding fixture can bear against it to resist honing torque.
29. True mandrel and stone (refer to Section 2).
30. Set coolant lines to supply a continuous supply of coolant to front and back of bore. Coolant nozzles are attached to small aluminum bases that can be attached to stroker carriage. Turn COOLANT selector to CONSTANT and adjust valves on coolant manifold. Use as much coolant as possible without losing any to splashing or spraying out of machine.
NOTE: There are two sizes of coolant nozzles provided. Black nozzles have small openings for delivering a steady narrow jet of coolant from a distance. Use these if it is difficult or inconvenient to place nozzle close to workpiece. Orange nozzles have larger openings and can deliver a larger volume of oil with less splash. Larger nozzles are preferred if they can be positioned close to workpiece.

OPERATION - MANUAL HONING
Follow ALL steps for manual honing carefully and in the order listed.

NOTE: Before honing, review your setup of machine.

1. Gage bore size using Sunnen Precision Bore Gage to determine amount of stock to be removed.
2. Install workpiece in workholding fixture.

WARNING
To prevent personal injury and possible damage to machine, DO NOT hone without installing workpiece in a workholding fixture that transmits honing torque to a solid machine member. Never try to absorb honing torque by holding workpiece with your hand.

3. Slide workpiece on mandrel and center workpiece over stone. It may be necessary to back off Stone Feed Dial (clockwise) to get workpiece on mandrel.
4. Turn POWER ON.
5. Make sure that Roughing Feed Force is set to desired setting and then turn FEED selector to EXPAND. Turn workpiece several revolutions on mandrel to seat workpiece on stone.

WARNING
Do NOT step on foot pedal to set stock removal amount. Spindle will turn if foot pedal is depressed.

6. Turn Stone Feed Dial until needle on Honing Indicator shows amount of stock to be removed. Make sure that Honing Tool / Indicator Scale Selector is set to appropriate mandrel family.
7. Turn FEED selector to RETRACT.
8. Check Spindle Speed setting and verify that STROKING selector is set to MANUAL.

WARNING
Recommended speeds may not be suitable for all applications. For MANUAL HONING always start with a speed that is no more than half speed recommended on chart, then increase speed in small increments only when job seems to be running safely. Never exceed recommended speed when manually honing.

9. Slowly depress Pedal while stroking workpiece. If bore is rough or out of round DO NOT fully depress Pedal until bore has smoothed out as evidenced by diminishing vibration. Use same Overstroke at each end of stroke. If possible, frequently stop machine and reverse workpiece on mandrel.

WARNING
If bore is shorter than stone, then "Overstroke" is amount bore extends past stone at end of stroke. If stone is shorter than bore, then "Overstroke" is amount that stone extends past end of bore at end of stroke. Overstroke should be 1/3 to 1/2 of bore length or stone length, whichever is shorter.

10. If needle on Honing Indicator appears to be moving too slowly, then increase Roughing Feed Force. But never increase feed force to point that it is difficult to stroke workpiece smoothly and consistently by hand.

CAUTION
Very small mandrels may break before you encounter significant resistance to stroking. With very small mandrels, do not increase feed force unless needle on Honing Indicator shows that cutting has virtually stopped.

11. Hone until needle on Honing Indicator reaches zero. Do not hone below zero. Below zero feed force drops from set value which can cause glazed stones, poor accuracy, and an unnecessarily long honing cycle.

12. Gage hole size. If workpiece was correctly seated on mandrel when stock removal was set, and if Stone Feed Dial or Roughing Feed Force dial has not been moved, then bore should be undersized by amount that stone has worn. Advance Stone Feed Dial by this amount and hone again to zero.

13. If more than one workpiece is to be honed, then place next workpiece on mandrel and repeat honing operation. Do not advance Stone Feed dial at beginning of a cycle unless you are confident that stone will wear at least that much. If you feed up more than stone actually wears then bore will be oversized when you hone to zero.

SETUP - POWER STROKED HONING
Follow ALL steps for power stroked honing carefully and in the order listed.

1. Press Emergency Stop to clear any previous setup.
2. Turn OFF coolant supply by turning Main Control Valve on Coolant Manifold fully clockwise.
3. If ASC unit is attached to machine, loosen Clamp and slide unit out away from spindle. Turn ASC PROBE selector to DOWN. (Unit can also be removed from machine entirely.)
4. Set FEED selector to RETRACT.
5. Turn FEED REGULATOR off by turning INITIAL DIAMETER knob fully clockwise.

6. Turn AUTOMATIC STONEWEAR COMPENSATOR off by turning knob fully clockwise.

7. Remove Spindle Splash Guard.

8. Disengage Stroker Carriage from power stroker:
 • Turn STROKING selector to UNLATCH.
 • Pull Stroker Carriage forward to provide access to spindle.

9. Select correct honing unit and stone from Sunnen Honing Supplies Catalog.

10. Assemble Honing Unit according to instructions.

11. Set HONING TOOL / INDICATOR SCALE selector to position that matches tool being used and scale you wish to read.

 NOTE: For most applications, it is recommended that "A" scale be used unless stock removal is expected to be more than 240µ (.009 in.). Finer resolution on "A" scale gives a clearer indication of honing rate.

12. Turn STONE FEED dial clockwise until you meet resistance, then advance it counterclockwise approximately 10 turns.

 CAUTION
 Do not force STONE FEED DIAL or damage to feed system may result.

13. Pull Mandrel Wedge straight back as far as possible.

14. If required, install Spindle Sleeve (LN-570A, not supplied with machine) on Honing Unit.

15. Rotate spindle by hand until large set screw is up (12 o'clock position).

16. With set screw indentation on honing unit in 9 o'clock position, insert honing unit as far as it will go. Rotate honing unit 1/4 turn clockwise to engage wedge with feed rod, then push honing unit all way in until it bottoms.

17. Test wedge hookup by pulling honing unit straight out (do not rotate). If wedge is hooked up it will not allow unit to come out. If honing unit comes out, repeat step 16. Push honing unit back in until it bottoms.

18. Tighten large set screw in spindle.

19. Release Emergency Stop and turn power on.

 NOTE: Steps 20 through 29 are instructions for truing stone and shoes of honing tool. Truing is not always necessary. If you don't need to true mandrel, then skipping these steps can save considerable time in set-up. See Appendix A for guidelines on when truing is necessary and when it can be considered optional.

20. Set STROKING selector to MANUAL.

 ❙ Set STROKER key switch to DISABLE.

21. Turn SIZE CONTROL selector to ZERO SHUT-OFF.

22. Set Roughing Feed Force Dial to some low value (approximately "1" for tools smaller than 6 mm (.25"), "1.2" for larger tools).

 NOTE: Roughing Feed Force cannot be adjusted to a value lower than Finishing Feed Force setting. It may be necessary to turn Finishing Feed Force Dial down so that Roughing Feed Force can be set to desired level.

If FINISHING FEED FORCE selector is set on OFF, Roughing Feed Force dial may be difficult to turn. If FINISHING FEED FORCE selector is set to AFTER ROUGH TO FINISH DIAMETER or to DURING EXTRA STROKES ONLY, then Finishing Force Dial may be difficult to turn. During setup only you may turn this selector to position that frees feed force dial you are trying to turn. If you do this, remember always to return this selector to its original position after setting feed force.

 CAUTION
 When truing, always start at a low feed force for safety.

23. Turn FINISHING FEED FORCE to OFF.

24. Reduce Mandrel Runout (refer to Section 2).

25. Set Spindle Speed for truing. Use chart on operator station as a guideline for determining speed.

 WARNING
 Recommended speeds may not be suitable for all applications. For MANUAL HONING and TRUING always start with a speed that is no more than half speed recommended on chart, then increase speed in small increments only when job seems to be running safely. Never exceed recommended speed when manually honing or truing.

26. Position Stroker Carriage for manual honing:
 • Push Stroker Carriage back until it stops. Turn STROKING selector to MANUAL.

 NOTE: Hand lever on stroker shaft must be up for internal stroker latch to engage properly.

 • Set STROKER LENGTH to 6 mm (1/4 in).
 • Loosen Stroke Position Lock and turn Stroke Position Handwheel to move Stroker Carriage in until it stops. Tighten Stroke Position Lock.

27. Remove any fixturing components that do not provide adequate clearance for manual honing.

28. True mandrel and stone (refer to Section 2).

29. Return Spindle Speed setting to zero for safety.
30. If Two-Stage Feed Force is not desired, set Finishing Feed Force selector to OFF. If Two-Stage Feed Force is desired, select mode of operation: either "After Rough to Finish Diameter" or "During Extra Strokes Only". (Refer to Appendix A, for guidelines to determine when Two-Stage Feed Force is useful and how to determine best mode of operation.)

31. Set Roughing Feed Force to desired level.
32. If using Two-Stage Feed Force, set Finishing Feed Force to desired level.

NOTE: Roughing Feed Force cannot be adjusted to a value lower than Finishing Feed Force setting. It may be necessary to turn Finishing Feed Force Dial down so that Roughing Feed Force can be set to desired level.

If FINISHING FEED FORCE selector is set on OFF, Roughing Feed Force dial may be difficult to turn. If FINISHING FEED FORCE selector is set to AFTER ROUGH TO FINISH DIAMETER or to DURING EXTRA STROKES ONLY, then Finishing Force Dial may be difficult to turn. During setup only you may turn this selector to position that frees feed force dial you are trying to turn. If you do this, remember always to return this selector to its original position after setting feed force.

33. Eliminate conical and parallel spindle runout (refer to Section 2).
34. Set stroke length: Loosen Stroke Length Lock on front panel (1/4 turn is usually sufficient) and turn Stroke Length Handwheel until Stroke Length Indicator is aligned with desired stroke length. For most applications, set stroke length to a value that is 95% of bore length or abrasive length, whichever is longer. (See Stroke Length Guide printed on front panel of Machine.)

NOTE: Maximum stroke length is bore length or stone length whichever is longer.
If workpieces have long counterbores or large overhangs, shorten stroke length to gain stability. For workpieces with blind holes, maximum stroke length should be bore length, including relief, minus 2/3 stone length.

35. Lock stroke length by tightening Stroke Length Lock securely.
36. Engage Stroker Carriage with power stroking unit: Push Stroker Carriage back until it stops. Turn STROKING selector to AUTOMATIC.

NOTE: Hand lever on stroker shaft must be up for internal stroker latch to engage properly.

37. If Stroker Carriage is very close to spindle, then loosen Stroke Position Lock and turn Stroke Position Handwheel to move it away from spindle.
38. Install Workpiece Fixturing. Workpiece must be fixtured to resist honing torque and to drive workpiece back and forth for stroking. ML-5000 includes following standard fixturing components: A Universal Fixture with Fingers for stroking, and small Torque Arm to absorb honing torque. These can be used for most applications, however other fixturing components are available from Sunnen Products Company for certain types of applications such as square honing. See Catalogs or contact your Sunnen Sales Representative for more information.

NOTE: No standard fixture is provided to grip workpiece to transmit honing torque to torque bar. Several optional fixtures are available. Also some types of workpieces are easily fixtured with common hardware items. Contact your Sunnen Field Service Engineer for fixturing. (Refer to Appendix E for Carriage Hole Pattern.)

39. If using standard Universal Fixture, adjust fingers on gate and on stroker carriage to contact workpiece as close to tool as possible without risking accidental contact with tool. Position gate so that workpiece is captured, but not held tightly between fingers. There should be only a small amount of clearance between fingers and workpiece. Less than 1 mm (.04 in.) is preferable, but more is acceptable if workpiece length is expected to vary.

40. If using standard Universal Fixture, position Torque Arm to resist torque of workpiece as shown (see Figure 3-1). Adjust bar so that torque is taken as far from honing tool as possible but with out risk of workholding fixture slipping past torque bar (refer to Appendix A).
41. If using an optional fixture purchased from Sunnen Products, carefully follow all setup instructions supplied with that fixture. If constructing your own special fixture make sure that honing torque will be resisted adequately, and that workpiece is captured axially for stroking but free to "float" and align itself on tool.
WARNING
Keep hands clear of work area, before pressing Stroker Jog.

42. Set stroke position: Press Stroker Jog and hold it in until stroker carriage stops at one end of stroke. Measure overstroke, distance from end of stone to end of workpiece bore. (Place workpiece in fixture or hold it next to tool to measure.) Press Stroker Jog and hold it in until stroker carriage moves to other end of stroke. Measure overstroke on that end. If overstroke is not equal on both ends, then adjust stroke by loosening Stroke Position Lock and then turning Stroke Position Handwheel. Handwheel is graduated in millimeters with numbers increasing as carriage is moved away from spindle. Tighten Stroke position Lock and recheck overstroke on each end.

43. Set coolant lines to supply a continuous supply of coolant to front and back of bore. Coolant nozzles are attached to small aluminum bases that can be attached to stroker carriage (see Figure 3-2). Turn COOLANT selector to CONSTANT and adjust valves on coolant manifold. Use as much coolant as possible without losing any to splashing or spraying out of machine.

NOTE: There are two sizes of coolant nozzles provided. Black nozzles have small openings for delivering a steady narrow jet of coolant from a distance. Use these if it is difficult or inconvenient to place nozzle close to workpiece. Orange nozzles have larger openings and can deliver a larger volume of oil with less splash. Larger nozzles are preferred if they can be positioned close to workpiece.

For convenience one coolant nozzle can be clamped in back of stroker carriage on a rib nearest spindle pointing up to rear of workpiece bore (see Figure 3-3). Note that almost all workpieces will be positioned with rear of bore in this location, so this one nozzle will not require adjusting when changing setups.

44. Return COOLANT selector to CYCLE ONLY.
45. Replace Spindle Splash Guard on back of Stroker Carriage. Press STROKER JOG to check Splash Guard clearance.
46. Set STROKING selector to AUTOMATIC.
47. Set SIZE CONTROL selector to desired size control mode.
48. Set FINISHING FEED FORCE to desired mode.

NOTE: Refer to Appendix A, for guidelines on when Two-Stage Feed Force feature is beneficial.

If using ZERO SHUT-OFF go to step 50.

49. Set Automatic Size Control (ASC) Unit (refer to Section 2).
50. Set EXTRA STROKES to desired value.

NOTES: If Size Control is Zero Shut-Off, Extra Strokes will only occur if FINISHING FEED FORCE is set to DURING EXTRA STROKES ONLY. Otherwise machine control system will disregard any numerical value displayed.

If Size control is ASC, Extra Strokes can be used with Finishing Feed Force in either mode or with Finishing Feed Force off.

Regardless of Size control mode selected, following feature of Extra Strokes display is always active: If a numerical value is displayed, stroker will always stop at a consistent end of stroke (front or back). If display shows "-" then stroker will stop immediately once size control device is triggered. The "-" feature is only necessary when trying to obtain extremely high size repeatability when using Zero Shut-Off or when it is feared that stroker motion at end of cycle may cause scratches on extremely fine finishes. If using the "-" feature with ASC, note that all size corrections must come from adjusting screw in sensing tip body.

If ASC size control mode is selected but ASC Unit is disconnected, machine control will begin counting down extra strokes 1-1/2 seconds after honing cycle begins. This produces honing cycles of consistent duration, lasting only specified number of strokes. This can be useful when only some deburring or polishing is required.
Changing amount of Extra Strokes is an easy way to compensate for ASC sensing tip wear. However, keep in mind that more extra strokes there are more final bore size can vary, since bore is being plug gaged before extra strokes. If honing rates vary over time more or less extra material may be removed during finishing. If final size tolerances are close, keep amount of extra strokes to a minimum.

51. Using Sunnen Precision Bore Gage, measure bore size of a workpiece and place it on honing tool.

WARNING

Do NOT step on foot pedal to lock alignment bushing on mandrel. Spindle will turn if foot pedal is depressed.

52. Turn Feed Selector to EXPAND. Rotate workpiece by hand some to get it to seat fully on mandrel.

53. Make sure FINISHING FEED FORCE selector is set to desired position.

NOTE: If FINISHING FEED FORCE mode is AFTER ROUGH TO FINISH DIAMETER, skip steps 54 and 55 and go to step 56.

54. Turn stone feed dial until needle on Honing Indicator reads amount of stock to be removed from diameter of workpiece on mandrel.

NOTE: There is some backlash in STONE FEED dial. For best accuracy in setup, always turn dial until Honing Indicator reads some amount less than stock removal and then feed up (counterclockwise) until needle reads correct amount of stock removal.

55. Skip step 56 and go to step 57.

56. Set ROUGH to FINISH DIAMETER and stock removal amount.

57. Set FEED REGULATOR:

NOTE: Use of FEED REGULATOR is optional. If it is not to be used on this application, then skip this step and go to step 58. (See Appendix A for guidelines on when Feed Regulator may be beneficial.)

58. Set AUTOMATIC STONEWEAR COMPENSATOR.

59. Set Spindle Speed. Use chart below knob to determine spindle speed based on bore diameter.

60. Set Stroke Speed. Use chart below knob to determine stroke speed based on stroke length.

WARNING

Recommended speeds may not be suitable for all applications and for all fixtures. Always start a new setup with speeds that are much lower than recommended to test stability of tooling and fixturing.

OPERATION - POWER STROKED HONING

Follow ALL steps for power stroked honing carefully and in the order listed.

NOTE: Before honing, review your setup of machine.

1. Install workpiece in workholding fixture.

WARNING

To prevent personal injury and damage to machine DO NOT hone without installing workpiece in a workholding fixture.

2. Install workpiece with workholding fixture in Gate Fixture or other stroking fixture and close fixture so that workpiece is captured for stroking.

3. Turn POWER ON.

4. Turn COOLANT to CONSTANT to check flow of coolant to tool and workpiece. Return selector to CYCLE ONLY if that is desired mode of operation.

5. Start cycle by either pressing Cycle Start or stepping on Foot Pedal. In general it should be not necessary to use Foot Pedal for operation. However, by using it on first workpiece you can make feed system engage workpiece slowly to possibly prevent damage from an improper setup.

NOTE: Cycle stop can interrupt any cycle before final size has been reached.

6. When cycle stops automatically, gage final bore size.

WARNING

To avoid personal injury, allow stroker and spindle to come to a complete stop before removing workpiece or attempting to change setup in workarea. Always keep hands and objects away from stroking machine components until they have come to a complete stop.

7. If you are using ZERO SHUT-OFF for size control, then move STONE FEED dial to adjust size if size is not correct.

NOTE: STONE FEED dial has some backlash. If you must feed down, always feed down beyond and then up to point desired.

CAUTION

Advancing STONE FEED dial while machine is running is not recommended. If you must advance dial while machine is running, be careful not to have your hand on dial when Automatic Stonewear Compensator is about to actuate (at beginning of cycle if using Zero Shut-Off; when needle reaches zero if using ASC).

8. If you are using ASC, then adjust final bore size by either adjusting screw in sensing tip or by changing number of extra strokes. Large adjustments should be made by adjusting sensing tip. Small adjustments can be quickly and conveniently made by changing number of extra strokes. Over time, as sensing tip wears, size can be adjusted easily with this feature.
NOTE: In general if workpiece is honed slightly undersized, you may adjust STONE FEED dial and immediately rehone that workpiece. However when using Two-Stage Feed Force or Extra Strokes feature, it is not recommended that you try to hone workpieces that are only slightly undersized. In time it takes for finishing force to actuate or for extra strokes to count off, workpiece will probably go oversize. It is recommended that any such workpieces be set aside until end, and then honed with finishing force off but with roughing feed force set to same value as finishing force had been, and with no extra strokes.

The following adjustments may require running several cycles to observe pattern of stonewear, cutting rate, etc.

9. Is finished bore tapered from one end to other, with direction of taper consistent with workpiece's orientation in stroking fixture? If so, loosen Stroker Position Lock and adjust stroke by turning Stroke Position Handwheel slightly to move stroker carriage in direction that workpiece bores are larger.

WARNING
NEVER adjust stroke length or stroke position while machine is running.

10. If using Zero Shut-Off, do you have to advance STONE FEED dial by a consistent amount after each cycle? If so and AUTOMATIC STONEWEAR COMPENSATOR is OFF, then see Setup-Power Stroking, step 58 to turn it on and adjust it. If it is already on, adjust amount of automatic stonewear compensation by turning AUTOMATIC STONEWEAR COMPENSATOR knob counterclockwise some. Write down or make a mental note of STONE FEED dial position. Press "check" button and hold in to check amount of compensation. Adjust if necessary. Return STONE FEED dial to original position.

11. If using Two-Stage Feed Force, Is amount of finishing too long or too short? If using AFTER ROUGH TO FINISH mode, amount of finishing can be increased by turning AFTER ROUGH -> FINISH knob clockwise slightly. If using DURING EXTRA STROKES ONLY, amount of finishing can be increased by adding extra strokes. However, if using extra strokes with ASC, this may change final bore size and sensing tip may have to be adjusted.

12. Is honing rate reasonable? Is cylindricity of finished bore acceptable? Feed forces may have to be adjusted. In general, increase Feed Force if honing is too slow and finished bores are round and straight and of consistent size. Also, in general, decrease Feed Force if bores are not as cylindrical as desired, if size is inconsistent or if stonewear is excessive. If not using Two-Stage Feed Force, it may be beneficial.

13. Is stroker stopping at desired end of stroke? End of stroke that stroker will stop on can be changed by pressing STROKER JOG and holding in until stroker stops at opposite end. Every cycle thereafter will stop at that end.

14. To correct other problems with workpiece bores, see Troubleshooting.

OPERATION, SETUP: PROGRAMMABLE STROKER CONTROL (PSC)

1. Read and understand all safety instructions provided with the machine.

2. Perform all of the set up activities that are required for the honing job. (i.e. install and align the tool, set the spindle speed, etc.) Consult the instructions provided with your machine to solve any problems that you may encounter.

3. Hone several parts to ensure that the machine is properly set up. Use this step to determine the problem area of the bore.

Dwell feature

1. Press F1 to enable PSC.

2. Press F3 to enable the Dwell function.

3. Press the down arrow once. To select the front of bore, press F5. For the rear of the bore, press F6.

4. Press the down arrow twice. Press enter once. You can now begin to change the number of hone strokes and dwell time. Use the arrow keys to change the value and then press enter to confirm it.

5. Once all of the parameters are entered, use the up / down arrows to toggle through all menus to verify the machine settings.

6. Decrease the spindle speed to 200 RPM. Run a test cycle (Without a workpiece) to ensure that the machine behaves as desired. Reset the spindle speed and run a test piece.

7. Modify the number of hone strokes and dwell time until the desired part geometry is obtained.

Short Stroke feature

1. Press F1 to enable PSC.

2. Press F4 to enable Short Strokes.

3. Press the down arrow once. To select the front of bore, press F5. For the rear of the bore, press F6.

4. Press the down arrow twice. Press enter once. You can now begin to change the number of hone strokes and short strokes. Use the arrow keys to change the value and then press enter to confirm it.

5. Once all of the parameters are entered, use the up / down arrows to toggle through all menus to verify the machine settings.

NOTE: If using ASC with PSC feature, turn ON Dip Switch A5 (see Appendix A, Special Topics).
6. Decrease the spindle speed to 200 RPM. Run a test cycle (Without a workpiece) to ensure that the machine behaves as desired. Reset the spindle speed and run a test piece.

7. Modify the number of hone strokes or short strokes until the desired part geometry is obtained.

NOTE: If using Extra Strokes feature during short stroking, a short stroke will decrement extra stroke counter as if it were a normal stroke.

OPERATION- SET UP: CYCLE TIME CONTROL (CTC)

1. Read and understand all safety instructions provided with the machine.

2. Perform all of the set up activities that are required for the honing job. (i.e. install and align the tool, set the spindle speed, etc.) Consult the instructions provided with your machine to solve any problems that you may encounter.

3. Hone several parts to ensure that the machine is properly set up. Press the down arrow several times until the cycle time screen is displayed. Observe the various cycle times that are encountered.

4. To enable the CTC system, press F2.

5. Press the down arrow once. The minimum / maximum cycle time screen will appear.

6. Press enter and use the arrows to modify the min and max times.

NOTE: Extra stokes are counted in actual hone time.

7. Press the down arrow twice. The Pressure Comp. Value screen will appear. Press enter once and use the arrow keys to adjust the value. Once the desired value is set, Press enter to confirm.

8. If desired, the user can press F8 to visually watch the machine adjust the pressure. This helps to better understand the relationship between the pressure comp value and the actual adjustment on the rough pressure setting.

9. Press the down arrow three times. The Sample Lot Size screen will appear. Press enter and use the arrows to enter the proper value. Press enter to confirm. Note: the minimum lot size is one. The machine will make an adjustment after it counts as many non-conforming cycles as are specified by the sample lot size.

10. Once all of the parameters are entered, use the up / down arrows to toggle through all menus to verify the machine settings.

11. It is recommended that ASC Unit be used when C.T.C. is also in use to maintain size control.

OPTIONAL: Max pressure sensor.

Typically the maximum pressure sensor is set to limit the amount of adjustment to ½ of the actual pressure setting. For example, If the machine is set at a pressure of 5, the max sensor is set at 7.5 (5*1.5). This will limit the amount of feed force to prevent tool damage.

1. To set the sensor, open the left access door of the machine enclosure.

2. Directly behind the rough feed pressure knob is a proximity sensor. Turn the rough feed pressure knob until the maximum desired pressure is set.

3. Adjust the proximity sensor until the indicator light turns on. A message will display on the touch screen: CTC Disabled. Max Feed Pressure.

4. Return the feed pressure to the desired level.

Important Notes regarding Cycle Time Control:

- If the incoming part size fluctuates greatly (more than two thousandths of an inch), the honing time will also fluctuate. It is important to use a greater span between minimum and maximum.

- Set a reasonable minimum and maximum cycle time for your process. If the times are too close together, and the machine's cycle times do not fall into this range, the machine could tend to make adjustments more frequently than desired.

- Typically setting larger Sample Lot Sizes will help maintain steady operation.

- The Max feed pressure proximity sensor is set from the factory at medium pressure of the machine. To avoid mishaps, set this sensor at an appropriate position. See the instructions in this manual for setting this sensor. Ask your sales representative for assistance if you are unclear.

Other Features: Cycle Timer and Cycle Counter:

Your ML-5000 is equipped with features to monitor cycle time and completed cycles. In all modes, the user can monitor the cycle time and parts counter.

- For the down arrow until the desired screen is displayed.

- To reset the cycle counter, press F7.

Typical examples:

Reset the cycle counter (F7) whenever a new tool is installed into the machine. When the tool is removed from the machine, the user can record the number of completed cycles. This can help the user to calculate the cost per bore, determine the proper time to order new tools, etc.
TO ACCESS COUNTERBALANCE PIVOT PIN GREASE FITTING - SET ROUGHING FEED PRESSURE ABOVE 4 (THIS WILL ALLOW MECHANISM TO PIVOT FURTHER FORWARD AND EXPOSE GREASE FITTING). FINISHING FEED FORCE SHOULD BE TURNED OFF AFTER GREASING, FEED PRESSURE CAN BE SET BACK TO DESIRED VALUE.
SECTION 4
ROUTINE MAINTENANCE

GENERAL
The following procedures are given as guides only and are not to be construed as absolute or invariable. Each machine must be maintained individually according to its particular requirements.

WARNING
ALWAYS have power OFF when hoods are open or performing service not requiring power.

CLEANING
Weekly, wipe exterior of machines with a clean, dry cloth. To clean exterior use warm water and a mild detergent or mild industrial liquid. Rinse thoroughly with clean, hot water, and wipe dry.

LUBRICATION
Feed Regulator Oil:
ISO VG 150 Oil

Spindle Only:
Lithium complex base grease
Viscosity: ISO VG 150
NLGI Grade: Moblith AW-0 or equivalent.
Sunnen SML-110 (1 Gal. Can)

All other lubrication:
Lithium complex base grease
Viscosity: ISO VG 220
NLGI Grade: Moblith AW-1 or equivalent.
Sunnen SML-120 (Cartridge)

ROUTINE MAINTENANCE SCHEDULE
The following procedures and suggested maintenance periods are given as guides only, and are not to be construed as absolute or invariable. Local conditions must always be considered. Each machine must be maintained individually, according to its particular requirements.

Daily:
• Check coolant level (Gage on front of Coolant System), and add coolant as necessary.

CAUTION
DO NOT overfill system.

• If using Sunnen Coolant Concentrate, check concentration and add water or concentrate as necessary.

Every 500 Hours:

CAUTION
Over filling spindle can cause it to run hot.

• Apply two or three pumps of grease to spindle (see Figure 4-1).
• Apply grease to Feed Force Screw Stop Blocks (see Figure 4-2).

NOTE: The counterbalance pivot pin grease fitting is accessible by setting the roughing feed pressure to a pressure setting above 4, this will allow the mechanism to pivot further forward and expose the fitting. The finishing feed force should be turned to the OFF position to expose this fitting. After greasing, the feed pressure can be set back to the value they were using.

• Apply grease all other grease fittings (see Figures 4-2 & 4-3).
• Apply grease to contact points on Indicator Assembly (see Figure 4-4).
• Apply grease (see Figure 4-5) to Cam Assembly Connection Pins
Every 1000 Hours:
• Clean and repack feed rod thrust bearings.

NOTE: This service period can be stretched to 2000 hours if machine is only used at low speeds (less than 1500 rpm) and low feed forces (less than 6).

• Inspect belts for cracks and excessive wear.

COOLANT SYSTEM
Replace Filter when flow to work area is insufficient (see Figure 4-6):

1. To change filter it will be necessary to remove Sediment Tray. Scoop sediment out of tray before attempting to remove it from coolant system. If Sediment Tray is nearly full it may be too heavy to lift out. Furthermore, cleaning this tray every time filter is changed will maximize filter life.

2. Filter Canister can be raised by loosening clamp handle securing canister to reservoir wall. Lift canister as far up as it will go, and then rotate it slightly. Then let it down until it's two protrusions on side of canister rest on canister bracket. In this position, drain valve at bottom of canister can be opened. Also open air vent at top to allow air into canister as coolant drains out bottom.

3. Open Filter Canister and replace filter element. It may be necessary to clean inside of canister.

4. Close drain valve and canister and lower it back into reservoir. Close air vent after bleeding air out of canister with pump running.

5. Replace sediment tray.

NOTE: Omission of Sediment Tray will reduce life of filter.

PUMP MAINTENANCE
Dirty honing coolant which must pass through pump before it can be filtered contains many aggressive abrasive particles. The progressing cavity pump used on coolant system provides superior life when compared with other common types of pumps. However, some of pump components can be expected to wear in this difficult application. The most common part to wear is Nitrile Stator, although eventually Rotor and Seal will also wear out. All of these parts are available from Sunnen or directly from pump manufacturer.

Stator and Rotor can be replaced easily without having to remove pump from coolant system. All that is required is removing four screws on suction housing.

NOTE: Because pump is below coolant level, break hose connections near top of coolant system (preferably inside) to prevent hoses from acting as a siphon when suction housing is opened.

FIGURE 4-6, Coolant System
To replace Spindle Belt, proceed as follows (see Figure 4-7):

1. Remove two screws holding feed rod thrust bearing cover to thrust bearing housing.
2. Slide feed rod and thrust bearings forward out of thrust bearing housing.
3. Loosen four screws holding spindle motor base plate to deck.
4. Loosen one screw on wedge that bears against motor base plate.
5. Slide spindle motor in toward spindle to loosen belt.
6. Remove and replace belt.
7. It is recommended that feed rod thrust bearings be cleaned and repacked with grease at this time:
 • Loosen screw in end of feed rod holding bearing in place.
 • Pull bearings off of feed rod. Note back-to-back arrangement of these bearings. (Wide faces of outer races are in contact.)
 • Clean and repack.
 • Replace bearing keeping same back-to-back arrangement.

NOTE: One bearing takes a much greater load than other. Bearing life will be extended if both bearings held together are reversed when they are replaced so that over time both bearings wear evenly.

8. Reverse steps above to reassemble. When tightening two screws fastening cover, alternate between two to seat bearings evenly.

9. Use screw against wedge to tension belt before tightening screws on base plate. Tension belt so that deflection at midway between pulleys is approximately 4mm (.158in) when a 33N (7.4 lb) load is applied.

STROKER BELT

To replace Stroker Belt, proceed as follows (see Figure 4-8):

1. Loosen four screws holding stroker motor base plate to stroker frame.
2. Loosen one screw on wedge that bears against motor base plate.
3. Slide stroker motor up to loosen belt.
4. Remove and replace belt.
5. Reverse steps above to reassemble. Use screw against wedge to tension belt before tightening screws on base plate. Tension belt so that deflection at midway between pulleys is approximately 4mm (.158in) when a 33N (7.4 lb) load is applied.

LIGHT CURTAIN FUNCTION TEST

(CE Machines Only) Check Light Curtain operation as follows (see Figure 4-9):

WARNING
The test outlined below must be performed at installation, according to employer’s regular inspection program and after any maintenance, tooling change, setup, adjustment, or modification to Light Curtain System or the guarded machine. Where a guarded machine is used by multiple operators or shifts, it is suggested that the test be performed at each shift or operation change. Testing ensures that Light Curtain and machine control system work properly to stop the machine. Failure to test properly could result in injury to personnel.

1. Interrupt light curtain system with proper size test object (Test object size: 30 mm diameter). When using the test object, guide it through the detection zone as shown below. At least one individual beam indicator must be lit while test object is anywhere in detection zone.
2. Start machine. While machine is in motion, interrupt detection zone with test object. Machine should stop immediately. Never insert test object into dangerous parts of machine.

3. With machine at rest, interrupt detection zone with test object. Verify that machine will not start with test object in detection zone.

4. Verify that braking system is working properly. Machine must come to a quick controlled stop when light curtain is interrupted. Drive faults, spindle coasting and stroker coasting are unacceptable.

LIGHT CURTAIN CLEANING

Accumulation of oil, dirt and grease on the front filter of the light curtain transmitter and receiver can affect the system operation. Clean filters with a mild detergent or glass cleaner. Use a clean, soft, lint-free cloth. Painted light curtain surfaces may be cleaned with a mild de-greasing cleaner or detergent.

FIGURE 4-9, Light Curtain
TABLE 5-1, Operational Troubleshooting

<table>
<thead>
<tr>
<th>CONDITION TO BE CORRECTED</th>
<th>STEP 1</th>
<th>STEP 2</th>
<th>STEP 3</th>
<th>STEP 4</th>
<th>STEP 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>STONE GLAZED*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stone surface looks clean but cutting grains are dulled</td>
<td>Increase cutting pressure</td>
<td>Increase stroking speed</td>
<td>Use a softer stone (one with a lower hardness number)</td>
<td>Check oil to be sure you are using Sunnen Industrial Honing Oil*</td>
<td></td>
</tr>
<tr>
<td>SLOW STOCK REMOVAL*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Honing dial needle moves too slowly)</td>
<td>Increase spindle speed</td>
<td>Increase cutting pressure</td>
<td>Check oil to be sure you are using Sunnen Industrial Honing Oil*</td>
<td>Use a softer stone (one with a lower hardness number)</td>
<td>Use a coarser grit stone (one with a lower grit number)</td>
</tr>
<tr>
<td>POOR STONE LIFE*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Honing dial needle moves too fast)</td>
<td>Decrease cutting pressure</td>
<td>Use faster spindle speed</td>
<td>(one with higher hardness number)</td>
<td>Stone (one with lower grit number)</td>
<td>Check oil to be sure you are using Sunnen Industrial Honing Oil*</td>
</tr>
<tr>
<td>BELLMOUTH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True stone and shoes with truing sleeve</td>
<td>Use softer stone (OK with lower hardness number)</td>
<td>If Bore is LONGER than 2/3 stone length:</td>
<td>Shorten STONE only (or row of stones) slightly on both ends</td>
<td>If bellmouth persists shorten stones still more but do not shorten shoes any further</td>
<td></td>
</tr>
<tr>
<td>If part is short or unbalanced, shorten stroke length</td>
<td></td>
<td></td>
<td></td>
<td>CAUTION: Overcorrection of bellmouth will lead to barrel condition</td>
<td></td>
</tr>
<tr>
<td>BARREL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True stone and shoes with truing sleeve</td>
<td>Use finer grit stone (one with higher grit number)</td>
<td>Use longer stone or shorten guide shoes on both ends</td>
<td>Use mandrel with longer stone and shoes</td>
<td>CAUTION: Overcorrection of barrel will lead to bellmouth condition</td>
<td></td>
</tr>
<tr>
<td>TAPE IN OPEN HOLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True stone and shoes with truing sleeve</td>
<td>Change stroke so tight end of bore is stroked over stone further</td>
<td>Reverse work on mandrel more often</td>
<td>If power stroking, make sure spindle and stoker are in alignment</td>
<td>Provide adequate oil flow at bottom of hole to wash cutting out</td>
<td></td>
</tr>
<tr>
<td>TAPE IN BLIND HOLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shorten stone and shoes to about 3/4</td>
<td>True stone and shoes frequently with truing sleeve</td>
<td>If hole has insufficient or no relief at bottom, use hard tip stone</td>
<td>Provide sufficient relief at bottom of hole</td>
<td>Provide adequate oil flow at bottom of hole to wash cutting out</td>
<td></td>
</tr>
<tr>
<td>Shorten stone more if taper persists</td>
<td>Thoroughly true stone and shoes to exact hole diameter</td>
<td>If thin wall part, decrease cutting pressure</td>
<td>If stone stops cutting at decreased pressure use stone with lower hardness number</td>
<td>If power stroking make sure spindle and stoker are in alignment</td>
<td></td>
</tr>
<tr>
<td>OUT-OF-ROUND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Make sure honing tool is recommended size for diameter to be honed</td>
<td>Thoroughly true stone and shoes to exact hole diameter</td>
<td>If thin wall part, decrease cutting pressure</td>
<td>If stone stops cutting at decreased pressure use stone with lower hardness number</td>
<td>If power stroking make sure spindle and stoker are in alignment</td>
<td></td>
</tr>
<tr>
<td>WAVINESS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use honing tool with sufficient stone length to bridge waviness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(or lands and ports in bore)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAINBOW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use L, BL, or multi-stone mandrel. Stone length should be at least 1-1/2 times the length of bore for best bow correction</td>
<td>Use shorter stroke length (less overstroke)</td>
<td>Use stone with lower hardness number to avoid part flexing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FINISH TOO ROUGH*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decrease cutting pressure</td>
<td>Use finer grit stone (one with higher grit number)</td>
<td>Check oil to be sure you are using Sunnen Industrial Honing Oil*</td>
<td>Thoroughly true shoes to exact hole diameter</td>
<td>For extremely fine finishes in soft or exotic material, use bronze mandrel or bronze shoes</td>
<td></td>
</tr>
<tr>
<td>RANDOM SCRATCHES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decrease cutting pressure</td>
<td>Use finer grit stone (one with higher grit number)</td>
<td>Use softer stone (one with lower hardness number)</td>
<td>If hard steel mandrel is being used, change to soft steel mandrel. If soft steel mandrel or shoes are being used, change to bronze mandrel or shoes</td>
<td>Check oil to be sure you are using Sunnen Industrial Honing Oil*</td>
<td></td>
</tr>
</tbody>
</table>

*Many honing problems, such as poor cutting action, poor stone life, and rough finish are caused by wrong honing oil, insufficient honing oil, dirty honing oil, or contaminated honing oil. Use only clean, full-strength Sunnen Industrial Honing Oil. Make sure that honing oil is neither diluted or "cut" with other oils. Keep solvents and cleaning fluids away from honing machine.
MACHINE OPERATION TROUBLESHOOTING

Error Messages:
ML-5000 has built in error messages that will appear in spindle speed screen to alert operator when machine has stopped due to an error or incorrect setup. The following is a list of errors and directions on how to clear them. Once problem is resolved, pressing "Cycle Stop" button will clear error from display.

Error 1: Unexpected Start Signal.
- When power is turned on, machine verifies that foot pedal/cycle start button is not pressed down to prevent any unexpected start up.

Error 2: Switch Has Changed During a Cycle.
- In order for this error to occur, one of the following switches was changed while machine was honing: Expand/Retract, Size Control Mode, Stroker Mode, Finishing Feed Force Mode, or Stroker Enable. These switches cannot be moved during a honing cycle.

Error 3: Spindle or Stroker Speed Set to Zero.
- A speed must be set for both spindle and stroker before machine can start a cycle.

Error 4: Safety System Was Triggered.
- The safety system determined that an unsafe condition has occurred. I.e. light curtain was broken.

Error 5: Workpiece Oversized.
- The original workpiece was oversized. The ASC probe never stuck workpiece. If ASC is not being used, this error should be bypassed (See Appendix A, "Dip Switch Settings")

Error 6: ASC is Not Aligned Properly.
- Extra Strokes count had decrement by three or more when an additional ASC probe hit was detected.

Error 7: Feed System is Expanded.
- A honing cycle cannot be started with feed system expanded. Place feed selector switch to Retract.

Error 8: Stroker Was Unlatched.
- A honing cycle cannot be started with stroker unlatched. Place stroker mode selector switch to Auto.

Error 9: In Manual Honing Mode.
- A honing cycle cannot be started with stroker mode in manual. Place stroker mode selector switch to Auto.

Error 10: Stroker Enable Key is Off.
- A cycle will not be started when stroker enable key is in OFF position. Turn stroker enable key to ON position.

Error 11: Electrical Fault.
- The machine has had an electrical fault. Check circuit breakers, drives, overloads and motor temperature.

Error 12: Stroker at Back of Stroke
- The machine was started with stroker carriage at front of stroke. If starting from front or stroke is needed, this error should be bypassed. (See Appendix A - "Dip Switch Settings")

Problems / Solutions:

WARNING
Some troubleshooting procedures require examining parts inside machine enclosure. ALWAYS have power OFF when hoods are open. If problem cannot be diagnosed by Power Off inspection, then consult a Sunnen Service Technician.

PROBLEM: Machine does not start when Cycle Start is pressed.
SOLUTIONS:
- Is power on?
- Is FEED selector set to RETRACT?
- Is foot pedal cover in place?
- Is STROKING selector on AUTOMATIC?
For Models ML-5000CE and ML-5000CD only:
- Is STROKER key switch set to ENABLE?
- Is green LED on Light Curtain lit?
 If red LED is lit, then something is blocking a light beam.
 If yellow LED is lit, then light curtain needs to do its startup self check routine. Put your hand through light beam path and then pull it out again to trigger self check routine.

PROBLEM: One or more of switches on operator panel do not seem to work.
SOLUTION: Some setup functions such as STROKER JOG will not work if other switches are set improperly. Check following:
- Is power on?
- Is FEED selector set to RETRACT?
- Is foot pedal cover in place?
- Is STROKING selector on AUTOMATIC?
For Models ML-5000CE and ML-5000CD only:
- Is STROKER key switch set to ENABLE?
- Is green LED on Light Curtain lit? If red LED is lit, then something is blocking a light beam. If yellow LED is lit, then light curtain needs to do its startup self check routine. Put your hand through light beam path and then pull it out again to trigger self check routine.

PROBLEM: Stroke Length slowly changes over time.
SOLUTION: Check Stroke Length Clamp Handle for tightness. If handle is already tight, then stroking load is exceeding capacity of stroking mechanism. Reduce stroking load by one or more of following:
- Reduce Stroker Speed
- Reduce Feed Force
- Reduce weight of fixturing

Also, check Stroker Pivot Assembly free play:
- With power OFF, open right hood.
- Move large stroker pulley by hand until Crossbeam is vertical (see Figure 5-1).
- Lift end of Pivot Assembly lightly with a finger and let go. It should drop between 4 and 10 mm. (Measured at nut.) If drop is greater than 10, loosen jam nut and then loosen nut slightly and retighten jam nut against it. Recheck freeplay.

PROBLEM: Stroker knocks at one or both ends of stroke.
SOLUTIONS:
- Is anything in work area being struck by carriage or fixture? (Press STROKER JOG to check)
- Is stroke length set to a point above 170mm?
- Is Stroke Position Lock tightened? If so, try turning Stroke Position Handwheel. If it turns easily see solution to next listed problem.
- Stroking load may be excessive, see solution above to “Stroke length changes over time”.

PROBLEM: Cannot set stroke speed to anything above 200 SPM.
SOLUTION: Look at stroke length setting. If it is at 90mm or above, machine control will not allow stroke speed to be set over 200 SPM, which would be dangerous to operator and destructive to stroker.

PROBLEM: When setting up to adjust conical and parallel tool runout, stroker carriage cannot be placed in a position where runout indicator can pick up concentric bushing centered on abrasive section of tool.
SOLUTION: Runout indicator can be pulled off of pin that it pivots on, and aluminum base that holds that pin can be turned upside down and rotated so that pin is in a different position when aluminum base is clamped on threaded stroker shaft. If indicator still cannot reach required position, it may be necessary to make a special pin for indicator to pivot on, mounting to front of stroker carriage.

PROBLEM: When attempting to hone a workpiece with only a very small amount of material to remove (1 to 5µ), cycle stops immediately without removing required amount of material.
SOLUTION: Feed System normally feeds up rapidly and there is somewhat of an impact when stone contact workpiece. Sensitive electronic transducer that reads feed rod position will sometimes pick up this vibration and read a position that is less than zero for a fraction of a second, thus ending cycle. To prevent this, turn Feed Regulator Initial Diameter knob on (counterclockwise) about 2-1/2 to 3 turns, and turn Maximum Rate knob to fastest speed (about 9-1/2). This will damp any feed rod vibration without lengthening cycle time and allow even very small amounts of material to be removed accurately.

PROBLEM: When using Two-Stage Feed Force, Roughing Feed Force slowly increases over time, OR Finishing Feed Force slowly decreases over time.
SOLUTION: Force Screw attached to that Feed Force dial is too free. Some drag must be applied to that Force Screw. Drag adjustment screw is provided for each Force Screw. Drag screw to tighten Finishing Force Screw is located down a hole on left side of top surface of casting that Force Screws thread into. Drag screw to tighten Roughing Force Screw is located up a hole on right side of bottom surface of that casting. Tighten drag screw 1/4 turn only and then see if problem persists. If so tighten screw another 1/4 turn and recheck. DO NOT tighten more than 1/4 turn at a time without rechecking to see if problem exists. Too much drag will make knob difficult to turn and components will wear out faster.

PROBLEM: Needle on Honing Indicator will not go all way to top of scale when Feed is Retracted.
SOLUTION: Is Indicator Scale / Honing Tool selector set to red “D2” tool family? If so, it is normal for needle to rest about three quarters from bottom of scale when retracted. This will not interfere with honing when using these tools. If selector is not set to red “D2” scale, then Stone Feed dial has been turned back too far. Advance Stone Feed dial (counterclockwise) until needle goes up past maximum scale reading.

PROBLEM: When using Zero Shut-Off, when Feed Force is changed, final bore size is different from previous workpiece.
SOLUTION: This is normal. Components in Feed System compress to a greater degree when feed force is greater. This means anytime you reduce feed force, needle on honing dial will rise, and subsequently final bore size will be greater than previous part. (Assuming stonewear is negligible or properly compensated.) Opposite is true when feed force is
increased. Therefore, to avoid making oversized bores, never reduce feed force by more than 0.5 without turning Stone Feed dial back (clockwise) some to compensate for this change in compression.

PROBLEM: Needle on Honing Indicator hangs up (cutting appears to stop) at very low feed force.

SOLUTION: With Feed Regulator off and no workpiece on tool, turn Feed selector to Expand. If needle goes immediately to a position below zero, then there is no machine problem. Feed force selected is probably too low for application, try increasing feed force. If needle stops at some position above zero try following:
- Are you trying to feed up past maximum size of tool you are using?
- Is tool running out? Try adjusting tool runout. Spindle runout can make feed system “stick” at low feed force.
- Lubricate feed rod at grease fitting inside machine.
- Try using a slightly higher feed force.
- If problem persists contact a Sunnen Service Technician (see next problem).

PROBLEM: An application that ran well at a certain feed force, on another ML-5000 or at another time on this machine runs differently now.

SOLUTION: Small differences in honing performance can be attributed to slight differences in individual machines, machine changes over time, or usually to normal variations in cutting performance of abrasive. Machines are calibrated to exact specifications before leaving factory. Over time they may change slightly. It will be easiest to merely adjust feed force to get optimum performance. If you suspect that honing performance has changed significantly or if you find it to be significantly different from another ML-5000 machine, then contact a Sunnen Service Technician to check Feed System calibration.

PROBLEM: Increasing roughing pressure makes no difference in honing rate.

SOLUTION: Is Feed Regulator turned on? If so, increasing pressure may make no difference in honing rate because honing rate is limited by maximum rate selected on Feed Regulator.
- If Feed Regulator is turned off, then check Air Pressure Regulator. Pressure should be 0.55 MPA/ If it is low, then adjust it, by turning knob on top of Regulator.

PROBLEM: When using Feed Regulator at higher feed forces, “Initial Diameter” (where needle begins to slow down on Honing Indicator) appears different during a cycle than it did when it was set by recommended procedure.

SOLUTION: This is normal behavior caused by amount of compression in feed system. However, this indicates that stones are contacting workpiece bore immediately after cycle begins although not at full feed force selected. If this initial contact still seems too rough, then turn Initial Diameter knob counterclockwise some to make Feed Regulator begin at a smaller diameter.

PROBLEM: Turning INITIAL DIAMETER knob on FEED REGULATOR smaller (-) does not seem to change point where FEED REGULATOR begins working.

SOLUTION: Damper Cylinder inside machine may be low on oil. Fill cylinder and try again. To fill cylinder without removing it from machine requires a long spout with a flattened tip to fit in fill slot in cylinder.

PROBLEM: Spindle and/or Stroker seems to stall under high honing load.

SOLUTION: Check belt tension. If deflection midway between pulleys is greater than 4mm (.158in) when a 33N (7.4 lb) load is applied, then belts can be tightened. Loosen four bolts holding motor assembly in place. Tighten belt tightening screw against its wedge slightly until appropriate tension is achieved. Retighten mounting bolts. If belt tension is correct and Spindle Stroker is still stalling, then reduce feed force being used. Continued operation under these loads can be detrimental to machine life.

PROBLEM: Machine stops during or at end of a cycle and power to machine is automatically turned off.

SOLUTIONS:
Are Spindle and Stroker Drives configured for voltage that 18 being supplied to machine? (See “Machine Conversion” in “Installation” section at beginning of this book.)

For Models ML-5000CE and ML-5000CD only:
Did something enter Opto-Electronic Screen during honing cycle? If so, machine will turn its power off so that operator will be aware that workpiece in machine has not been honed to completion.

PROBLEM: No Coolant flow or insufficient coolant flow.

SOLUTIONS: First check coolant level gage for sufficient coolant in reservoir, and check plastic valves in work area to be sure they are open. Pull coolant system out far enough to view it but leave it connected electrically. Open reservoir cover and remove sediment tray to view inside of coolant system. Turn machine power on and set coolant selector to CONSTANT. Refer to Appendix C.
TWO-STAGE FEED FORCE GUIDELINES

Feed System of ML-5000 can be set for a Two-Stage Feed Force honing cycle. With this feature honing begins at a selected roughing feed force, and then later switches to a lower finishing feed force to complete cycle. Both magnitude of finishing force and amount of stock removed during finishing stage are selectable by operator.

Although this feature is not always necessary, many applications perform better with addition of Finishing Feed Force Stage. Two-Stage Feed Force has three potential benefits:

1. Improved surface finish. When feed force is reduced toward end of cycle, surface finish may improve. A few applications have been found where using Two-Stage Feed Force can reduce RA surface finish to half value generated by roughing feed force alone. But usually improvement is not that dramatic. Amount of improvement in finish is limited by grit size of honing stone, and many applications will still require a secondary operation with a finer stone.

2. Improved cylindricity. When removing material quickly with a relatively high feed force, a workpiece with a non-uniform cross section or a thin wall can distort. Reduction of feed force also reduces distortion but increases cycle time. With Two-Stage Feed Force, often majority of material can be removed quickly at a relative high feed force, then finishing force can be used to improve cylindricity while taking workpiece to its final size.

3. Improved size control. ASC system can only check size once a stroke. Therefore, its accuracy is limited by amount of stock being removed each stroke. (In some applications, material is removed so rapidly that more than 3µ (.00015”) is being removed every stroke.) Likewise accuracy of using “Extra Strokes” to compensate for probe wear is reduced if stock removal rates are excessive relative to stroke rate. Even when using Zero Shut-Off, variations in spindle and stroker stopping time can cause size variations if stock removal rate is very high. Switching to Finishing Force right before end of cycle will slow cutting rate and improve repeatability of final size. Any of these benefits above translate to reduced cycle time and reduced cost. Even applications that run acceptably well with only a single feed force can potentially be improved by changing to a harder abrasive and then using Two-Stage Feed Force to correct finish, cylindricity, or size control problems usually associated with higher feed forces required for harder abrasive. With harder abrasive, stonewear is often reduced and productivity improved.

SELECTING FINISHING FORCE & FINISHING STOCK REMOVAL

Optimum finishing force and optimum amount of stock removal during finishing depends on application and can only be determined by experiment. However, following guidelines can help:

1. If Finishing Force is being used primarily to improve finish: Only a small amount of Finishing Stock Removal is required to improve finish, typically 15-30µ (.0006-.0012”), maybe more if a large reduction is necessary. More important is selection of finishing force. Typically, finishing force should be no more than half of roughing force for any significant improvement in surface finish. For dramatic improvements in finish (reducing surface finish by more than half) finishing pressure needs to be extremely low compared to roughing force.

2. If Finishing Force is used primarily to improve cylindricity: Amount of Finishing Stock Removal must be at least as much as cylindricity defect that must be corrected during finishing stage. For example, a bore 50µ out of round, or with 50µ bellmouth will take at least 50µ of stock removal to correct. Finishing force will probably need to be significantly lower than roughing force. A very crude rule of thumb is that distortion will probably be proportional to feed force. So, for example, a bore distorted to 50µ out of round at a force of 10 will probably be close to 25µ out of round if finished at a force of 5.

3. If Finishing Force is used primarily for size control: In this case feed force is reduced only so that cutting rate is not too fast when size control device finds its target bore size. It is only necessary to reduce feed force when bore is just a few microns from finish size. Also, Finishing Feed Force need not be much lower than Roughing Feed Force (sometimes only reduced to 80% of roughing value) to slow cutting rate sufficiently to achieve size control repeatability required.

SETTING TWO-STAGE FEED FORCE FEATURE

The change to Finishing Force can be triggered in two ways:

- “Rough to Finish Diameter”: When needle on honing indicator reaches a trigger point, set by operator, feed force switches from roughing to finishing. Assuming that stonewear is either negligible or properly compensated (either manually or automatically), then zero represents a consistent final bore size and trigger point represents a consistent bore diameter where finishing force starts.
- “During Extra Strokes Only”: In this case, trigger point is size control device selected by operator, either zero on honing indicator or point where ASC sensing tip enters bore.

The second method of triggering is easy to set-up. Merely set Finishing Feed Force to desired setting, select “During Extra Strokes Only”, and set extra stroke counter to some desired value.

The first method of triggering is less intuitive to set up. The following procedure is recommended:

1. Set Roughing and Finishing Feed Force to desired values.
2. Measure a workpiece and place it on tool over abrasive.
3. Select After Rough to Finish Diameter on Finishing FEED Force selector.
4. Expand tool.
5. Turn STONE FEED dial until needle on Honing Indicator is approximately on zero.
6. Turn Finishing Force Selector from Rough to Finish Diameter to Off and back again a couple of times to seat workpiece on tool, ending with selector in After Rough to Finish Diameter position.

NOTE: Needle on honing dial will move as feed force is switched. This is normal. Higher feed force compresses wedge and feed rod more, which results in a different indicator reading.

7. Turn STONE FEED dial up until needle on Honing Indicator reads amount of stock that you want removed during finishing stage.
8. Turn FINISHING FEED FORCE selector to OFF. Needle on Honing Dial will drop some. Do not turn STONE FEED dial to move it up again.
9. Turn ROUGH —> FINISH DIAMETER knob fully counterclockwise. Light next to knob should now be off. If it is not on then try using “B” indicator scale. Turn INDICATOR SCALE / HONING TOOL selector to “B” scale for tool you are using and go back to step 5. If indicator scale selected is already “B” and light is not off with ROUGH —> FINISH DIAMETER knob rotated fully counterclockwise, then either Finishing Force selected is too low, or finishing stock removal amount is too small for this finishing feed force mode to work properly. If this is case you must either increase finishing stock removal, or decrease difference between roughing and finishing forces, or use “During Extra Strokes Only” method.
10. Turn ROUGH —> FINISH DIAMETER knob slowly clockwise until light next to it just turns on. Trigger point is now set.

NOTE: Trigger point cannot be set to any point higher than half of full indicator scale. If you need to have finishing force for more stock removal than that, and you have selected “A” scale, then switch to “B” scale for tool you are using and go back to step 5.

11. Turn then FINISHING FEED FORCE selector to AFTER ROUGH TO FINISH DIAMETER.
12. Turn stone feed dial until needle on Honing Indicator reads amount of stock to be removed from diameter of workpiece on mandrel.

NOTE: There is some backlash in STONE FEED dial. For best accuracy in setup, always turn dial until Honing Indicator reads some amount less than stock removal and then feed up (counterclockwise) until needle reads correct amount of stock removal.

13. Ready to hone.

NOTE: When actually honing, trigger point or actual finishing stock removal amount may vary from settings made while spindle was off. Watch honing dial carefully during first cycle to see how much stock is removed after feed force changes and needle shifts up. If it is different from desired amount then move Rough to Finish Dial some to adjust, keeping in mind that “+” and “−” refer to diameter at which trigger point will occur.

DECIDING WHICH TRIGGER METHOD IS BEST FOR APPLICATION

Test trigger method to use depends on size control method being used and which of three benefits of Finishing Force is most important to achieve.

1. If improvement of surface finish is only reason for using Two-Stage Feed Force, then “During Extra Strokes Only”, will almost always be best trigger method, regardless of size control method. Best improvement in finish occurs only with drastic reductions in feed force. At these low feed forces, stone essentially “stops cutting”, nearly glazing. Cutting rate becomes so slow that it would require an inordinate amount of time to hone to zero shut-off point or to ASC probe diameter if “After Rough to Finish Diameter” method is used. With extremely low feed force and “During Extra Strokes Only”, effectively there is a timed sparkout stage before stopping.

Exception: Although stone may appear to “stop cutting” there must in reality be some stock removal for finish to improve. If this final slow rate of feed is not consistent over time or from one part to next, then addition of a significant amount of extra strokes after size control device has tripped can introduce inconsistencies in final bore size. If this is unacceptable then “After Rough to Finish” method must be used.
2. If improvement of cylindricity is primary reason for using Two-Stage Feed Force, and Zero-Shut Off is to be used, then “After Rough to Finish Diameter” will probably be best method. To improve cylindricity, a significant amount of stock must be removed during finishing stage. If “Extra Stroke” method is used, a large count will be required and, again, this can introduce inconsistencies in final bore size.

3. If improvement of cylindricity is primary reason for using Two-Stage Feed Force and ASC is being used, then “After Rough to Finish Diameter” method is recommended, but there are some limitations:

- With ASC selected, Automatic Stonewear Compensation will actuate when indicator reaches zero. Therefore, trigger point must be set above zero or else trigger point will never be reached.

- Note amount of indicator needle movement when feed force is changed from roughing to finishing. It is impossible to consistently remove less stock in finishing stage than amount of this needle movement.

- Amount of stock removed during finishing will vary somewhat due to stonewear. To keep this variation to a minimum, stonewear compensation must be set exactly to actual stonewear. However this is difficult to do. A more practical method is to set compensator to some small amount since compensator can work more than once per cycle as needed. Be careful not to set compensator too low relative to cutting rate, or else it will not be able to keep up with rate of stock removal.

Therefore best applications for using ASC with “After Rough to Finish Diameter” trigger will be where Finishing Stock Removal can acceptably be significantly larger than stonewear and significantly larger than indicator needle rise for desired feed force change, and where some variation in amount of stock removed during finishing is acceptable.

If application does not meet these criteria, then “During Extra Strokes Only” method must be used. However this is only practical for small amounts of finishing stock removal because, again, a large extra stroke count can introduce inconsistencies in final bore size.

4. If improvement of size control is reason for using Two-Stage Feed Force, then “After Rough to Finish Diameter” method must be used because cutting rate must be slowed before size control device (whether zero shut-off or ASC) finds its target size.

NOTE: Only a very small amount of finishing stock removal is necessary for improvement of size control, but if ASC is used, it is subject to same limitations listed above. Therefore a fairly generous amount of finishing stock removal should be used to avoid potential problems.

Note about Honing Workpieces that are Only Slightly Undersize

When honing without Two-Stage Feed Force or Extra Strokes it is common to take a part that was honed slightly undersize and re-hone it immediately to bring it right to size. However with these new special features in use, this is inadvisable. In time it takes for finishing force to actuate or for extra strokes to count off, workpiece will probably go oversize. It is recommended that any such workpieces be set aside until end, and then honed with finishing force off but with roughing feed force set to same value as finishing force had been, and with no extra strokes.

FEED REGULATOR

Feed Regulator on ML-5000 is a feed rate limiter. (On earlier model Sunnen Honing Machines this feature was called Stone Saver.)

Without Feed Regulator, at beginning of each cycle machine feeds rapidly until stone contacts workpiece. This high speed contact at full feed force in a rough bore can cause some stone break-down resulting in greater stonewear. Without Feed Regulator, ML-5000 Feed System is a constant force feed system, cutting rate will vary depending on condition of bore (fully or partially cleaned up), hardness of bore, and condition of stone (free cutting or glazing).

Feed Regulator can provide three benefits:

1. **Stone Saving:** Limiting feed rate just before stone contacts bore can eliminate excessive stone breakdown.

2. **Very Low Feed Force Honing:** There are practical limitations in applying a very low feed force consistently while tool expands very slowly. In many applications with extremely small mandrels (D2 family) optimum feed force is somewhere less than machine minimum of “1”. Using Feed Regulator set at a very slow speed restraints feed system and effectively delivers less than a feed force of “1” to stone.

3. **Elimination of glazing:** If stones are glazing, first recommendation is to use a softer stone or to increase feed force. If this is not possible or produces unacceptable results, then setting Feed Regulator to desired cutting rate and increasing feed force significantly will produce cycles of consistent duration without glazing.

Feed Regulator has an adjustable MAXIMUM RATE control and an INITIAL DIAMETER setting knob. INITIAL DIAMETER knob should be set so that feed system feeds rapidly at its normal rate up to some point slightly smaller than smallest bore you expect to encounter. At this initial diameter Feed Regulator takes over, slowing feed to rate that is set with MAXIMUM RATE dial. From that point, feed will continue at that rate or slower if normal cutting rate at selected feed force is slower than maximum rate selected.
For details on setting Feed Regulator see Setup-Power Stroking.

TRUING

Sunnen mandrels, shoes, and stones are manufactured to close tolerances so that in many low to medium precision applications it will not be necessary to true stone and shoes. A proper setup will generate and maintain parallelism between stone and shoes. If you choose not to true honing unit remember following:

- Hone first workpiece undersize by a fair amount so that you can check straightness of bore. If it is not acceptable, you will have to adjust stroke length or stroke position or stop honing cycle frequently and flip part end for end. Continue to hone parts undersized until bore straightness is acceptable. If bores do not straighten out after a few workpieces, then truing should be considered.

- A new stone, or a used stone placed in an application with a different bore size, will not make full contact with bore until it has worn a radius to match bore. Before it does this, stonewear will be high and cutting rate may be excessively fast. Turn feed force down until stone has worn to where it is making full contact with bore. Also, be careful setting up Automatic Stonewear Compensator before stone is making full contact because actual stonewear may be less after that point is reached.

NOTE:

- Truing should NOT be considered optional in following situations:
 - Honing bores with keyways or similar interruptions where full contact is required for stones to bridge keyway.
 - Very close tolerance work where a high degree of cylindricity is required.
 - When stone and shoes have worn grossly out of parallel from continued use of a bad setup.

ASC Unit Notes

1. Disconnecting and Removing

If Automatic Size Control Unit is not necessary for an application, it can be removed from machine if it is in way of fixturing.

- Disconnect electrical cable and two air lines where they enter machine to left of spindle. Air fittings here are self sealing so there is no need to plug ports.
- Loosen Clamp Screw on ASC unit several turns until unit can be lifted free from its guiding rail.

2. Timed honing cycles

For applications where some deburring or polishing is required for just a small amount of time, ML-5000 can be setup to produce cycles of consistent duration. This type of operation is available by placing dip switch B3 in ON position. See Appendix A, "Dip Switch Settings" before making any dip switch changes. Set EXTRA STROKES to:

\[
\text{STROKES} = \frac{(\text{Desired cycle time} - 1.5) \times \left(\frac{\text{Stroker Speed}}{\text{SPM}}\right)}{60} \quad \text{(seconds)}
\]

WORKPIECE & FIXTURE WEIGHT LIMITS

On ML-5000, workpiece and fixture is mounted on Stroker Carriage. Because all this has to stroke during honing process, it is desirable to keep weight of fixture to a minimum. If fixture and workpiece weigh too much, stroker speed may have to be reduced. A general rule of thumb is: If combined mass of workpiece and all fixturing mounted to carriage is less than 5 kg (11 lb), then strokes speeds recommended on chart on operator panel will be acceptable. If combined mass of fixture and workpiece is greater than 5 kg (11 lb) then stroke speed recommendations should be reduced by 10% for every kilogram over 5 kg (5% for every pound over 11 lb).

NOTE:

For safety always start heavy setups at 60 strokes per minute, then while cycle is running, turn stroke speed up slowly to desired speed. If, at any point, stroker begins to knock, labor, or vibrate excessively then reduce stroke speed to a point that is no more than 80% of that speed.

UNIVERSAL FIXTURES

ML-5000 is equipped with a standard Universal Fixture (see Figure A-1). Universal Fixture is completely adjustable so that virtually all workpieces can be stroked automatically. Workpieces are captured axially but not held rigidly so that they can “float” on tool so that tool can follow existing hole without moving its centerline. Fixture includes a torque arm so that a rigid torque absorption point is provided for workpiece or a special workholding fixture to bear against during honing cycle.

Universal Fixture is configured at factory to be a “Finger Fixture,” where a small lever can be used to quickly open outside fingers with a scissors type motion. This configuration will probably be most convenient for small and medium sized workpieces (see Figure A-2). However, if a larger opening is required to load workpieces, fixture can be quickly reconfigured to be a “Gate Fixture,” where entire gate can be lifted 90° to clear work area (see Figure A-3). Extra pieces that are packed with fixture are used in this configuration.

Universal Fixture is designed for maximum flexibility. In both configurations fixture can be reversed from left to right to suit operator’s preference. Also Hinge and Latch may be unscrewed from outside of gate piece and reattached on inside for longer workpieces.
NOTE: To mirror fixture from left to right requires removing components from gate, reversing gate and then reattaching components. If entire assembly is simply reversed, then fingers will end up in a position where they are not adequately supported to resist high stroking loads.

ADJUSTING FINGER FIXTURE:
- Set fixed fingers on carriage to contact workpiece as close as possible to tool, leaving enough clearance between tool and fingers so that there is no danger of contact during honing.
- Likewise set moveable fingers on fixture. First make sure that fingers are closed (move hand lever in toward tool). Then loosen two knurled lock nuts on bottom of fixture and turn finger stop screws until fingers are positioned in desired position. Tighten knurled lock nuts.
- There are two aluminum collars on each fixture support bar backing up Hinge and Latch. Loosen screws holding these collars and move collars out of way.

NOTE: Collars with Hinge have a loose pin spacing them apart. This pin may be omitted when using Finger Fixture configuration but it will be necessary for use with Gate Fixture configuration.

- Move finger fixture assembly on fixture support bars to a position where workpiece will be held with minimal end clearance (approx. 1mm, more if workpiece length is expected to vary widely).
- Move collars to back up both sides of Hinge and Latch and tighten them in place.

CHANGING TO GATE FIXTURE CONFIGURATION:
- Remove all components that are attached to gate piece of fixture.

NOTE: Use caution when disassembling, there are several small loose pieces. Store all parts together in such a way that they can be reassembled to gate if required.

- Detach gate from Hinge and Latch and turn it upside down. Reattach it to Hinge and Latch.
- Attach two extra fixed fingers provided to inside of gate.
- Loosen aluminum collars on fixture support bar.
- Move Gate Fixture assembly on fixture support bars to a position where workpiece will be held with minimal end clearance (approx. 1mm, more if workpiece length is expected to vary widely).
- Move collars to back up both sides of Hinge and Latch and tighten them in place. Leave just enough clearance for gate to open and close freely.

NOTE: Position pin between two collars backing up Hinge so that it holds gate upright when gate is opened.

TORQUE ARM
Torque arm is shipped assembled to a split collar on left fixture support bar. For very short workpieces there may not be room for this collar. Collar may be removed and torque arm can be attached to top of stroker carriage. An extra screw of appropriate length is provided for that purpose.

HINTS
- If there is difficulty in reassembling Finger Fixture, refer to exposed view in Repair Parts Catalog.
- If you need to change frequently between applications requiring finger fixture and applications requiring gate fixture, you may purchase an extra Gate, Hinge and Latch and keep each fixture built up and ready to change. Order Sunnen Part Numbers:
 - Hinge ML-6116A
 - Gate ML-6117A
 - Latch ML-6118A

- If you need to hone very long workpieces and standard fixture support bars are not long enough, longer bars are available as an option. (370mm long - Sunnen Part Number: ML-7190).
APPENDIX A

STROKER STOP POSITION MODIFICATION

The ML-5000 comes from the factory set to stop at the front of stroke at end of each cycle. When set to stop at end of stroke, sometimes stroker must move slightly after spindle has stopped rotating. In fine finishing applications this can sometimes cause axial scratches that are unacceptable. To avoid this, change Dip Switch A2 to set machine to stop immediately.

DIP SWITCH SETTINGS

There are two sets of DIP switches located on PED-2202 console board that select different modes of operation. Do not attempt to change any settings while power is on.

To Change a DIP Switch Setting:
1. Turn main disconnect off.
2. Open console
3. Locate DIP switches.
4. Move switch to desired setting.
5. Close and fasten Console.
6. Turn main disconnect on.

Switches Bank A

A1: Slow Extra Strokes - This causes Stroker to run a Jog speed for number of Extra Strokes selected. The program will limit number of Extra Strokes to 10.
A2: Stroker Positioning ON - When this is selected, machine will return stroker carriage to front of stroke at end of every cycle. When this switch is off, machine will stop immediately following honing cycle.
A3: ASC Up Before Cycle or Square Honing - The primary use for the A3 DIP switch is for square honing. This activates the solenoid that normally raises the ASC arm 0.5 seconds before the cycle starts. However, for square honing, the ASC arm is not on the machine and the square honing fixture is plugged into these ports instead of the ASC arm and activates regardless of ASC/ZERO SHUTOFF switch position. In this condition, Zero shutoff is desirable as well as activation of the ASC solenoid 0.5 seconds before the start of the cycle to lock the fixture that is now plugged in. The machine must be allowed to keep this fixture locked and run to zero for shut off. Square honing is used for honing connecting rods. This also works well for applications using ASC on a job with a very large fixture. The arm rising 0.5 seconds before the beginning of the cycle helps to prevent interference between the arm and fixture, but will still raise if you switch to zero shutoff because of the above description. For this application, put the ASC/ZERO SHUTOFF in the ASC position.

Switches Bank B

A4: Start at Back of Stroke - This switch will require operator to start a cycle with carriage at back of stroke. If carriage is at front of stroke when cycle start is pressed, an "Error 12 will be reported on operator station display.
A5: Ignore Oversize Workpiece - In ASC mode, if plunger fails to strike workpiece within first few strokes, machine determines that workpiece is oversize. Turning this switch on will prevent ML from reporting an "Error 5" condition.
A6: Limit ASC Wear - When using ASC mode, and placing this switch to ON position, ASC arm will NOT raise at beginning of cycle. The arm will rise at point set by Rough-Finish Diameter knob.(when green LED illuminates. This mode limits amount of wear on ASC probe.
A7: Stroker Front Proximity Switch Installed - When this switch is in ON position, it informs machine that a second proximity switch is installed on stroker pulley. The proximity switch allows machine to determine difference between front and back of stroke.
A8: Delay Stonewear Compensation - During ASC operation, ML-5000 normally advances Stonewear Compensator when honing indicator needle reaches zero. Turning this switch on will delay advancing of Stonewear Compensator until beginning of next cycle.

Warning: This type of operation should only be done with tooling that is designed to operate in this fashion. Contact your local Sunnen representative to find out if your tooling can be operated in this manner.
B1-B2: Factory Settings - These switches should be left in default factory position. DO NOT attempt to change these settings unless specified by a Sunnen Representative.
B3: Stroke Count Honing - Turning this switch on tells ML-5000 to hone for number of strokes set in "Extra Strokes" display. This is useful for deburring or polishing operations. The machine must be in ASC mode of operation for this switch setting to take effect.
B4: Ignore ASC Alignment Error - In ASC mode, if the plunger is struck after 3 misses during extra strokes, the machine determines that the ASC is in misalignment. Turning this switch on will prevent ML-5000 from reporting “Error 6” condition.
B5: Reverse Spindle Rotation During Finishing. - When finishing feed force is engaged during a cycle, spindle will begin rotating in the reverse direction. (Requires ML7000 Spindle Reverse Kit)
B6-B8: Not used - These switches are not currently used by ML-5000. They should be placed in OFF position.
GOOD HONING PRACTICES
ALWAYS DEBURR A ROUGH HOLE - If a bore is rough or has burrs prior to honing, a quick deburring operation with a very hard “deburring” stone prevents damage to stock removal or finishing stone, reduces stone costs and speeds up production.
HONE BEFORE HARDENING - When a part is to be hardened, always hone first, leaving only as little stock as necessary to correct heat-treat distortion. When needed, use a deburring stone to remove heat treat scale prior to sizing and finishing operation.
AMOUNT OF STOCK FOR HONING - Previous operation should leave just enough stock so that tool marks can be cleaned up and bore inaccuracies corrected. Less stock allowance is needed for Sunnen honing because Sunnen Honing Units are self-centering in bore. When going from a stock removal to a surface finishing operation leave only enough stock to remove cross-hatch pattern of coarser stone, usually only a few ten-thousandths of an inch.
PROVIDE RELIEF IN BLIND HOLES - Honing of a blind hole can be greatly assisted by providing relief in bottom corner of bore. This allows for at least some overstroking. The relief need be only a few thousandths deep and can even “blend in” as hole is honed. The ideal length of relief is 1/3 stone length. Any length of relief is much better than none.
PARTS CAN BE STACKED - Frequently parts with short bores can be “stacked” and honed as one long bore. Parts must have flat and parallel faces.
KEEP YOUR HONING TOOLS TRUE - Cutting surface of stone and guide surfaces of shoes must be kept straight and parallel to produce accurate work. Occasional use of a truing sleeve will assist in keeping tools true.
USE ONLY PROPER HONING OIL - Best honing results are obtained only when proper Sunnen Industrial Honing oil is used. Cutting oils, coolants, and other fluids are generally not satisfactory for honing and may result in excessive stone wear or glazing, low stock removal rates and poor surface finish, and frequently cause galling or scoring of part. Sunnen Industrial Honing Oil is especially compounded for honing needs. It keeps stone clean and sharp, reduces stone wear, increases rate of stock removal, and is invaluable in producing fine surface finishes. A free flow of honing oil should be provided, both for Sunnen Honing Machines and for Sunnen Portable Hones. Do not dilute, cut, or change honing oil in any way.
LONGER STONE LIFE - May be obtained by “easing” stone into bore when starting honing operation. When in use, feed regulator does this automatically. When not using feed regulator stone can be damaged by “tramping” on pedal, especially in a rough bore.
KEEP STONE CUTTING PRESSURE LIGHT - Just heavy enough to get good cutting action. Excessive stone pressure will only increase stone wear; it will not make stone cut faster.
UNUSUAL HONING PROBLEMS - Can be referred to Sunnen Honing Laboratory. Be sure to include all data concerning problem, such as tolerances, surface finish requirements, stock removal, type of material, material hardness, and production quantities.
REMMOVING WORKPIECE FROM MANDREL - Never begin removing workpiece from mandrel until spindle stops. When pedal is released or automatic shutoff occurs, your spindle should also stop.
HONING DIAL - Each number on dial indicator is equal to a certain amount of stone expansion. To determine this, refer to chart on front of machine.
HONING STONE - Select from Honing Supplies Catalog, from stone cabinet, or from SMOPS Guide.
WORN-OUT MANDRELS - When truing sleeve or workpiece makes contact with any part of mandrel other then shoe, replace mandrel or guide shoes.
TECHNICAL DATA
GUIDE SHOES - INTEGRAL SHOE MANDRELS - Soft shoe mandrels are recommended for all general honing operations. Mandrels with hardened steel shoes can be used for honing carbide, ceramic, or glass; for extremely rough holes; and for some long production jobs. Where extremely fine finishes are required and a 600-grit stone is used, solid bronze mandrels with integral shoes are required. Occasionally unusual specifications do not permit use of honing oils that contain sulfur, and it may be necessary to use bronze mandrels to prevent galling.
GUIDE SHOES - REPLACEABLE SHOE MANDRELS - General purpose guide shoes are supplied as original equipment on mandrels with replaceable shoes. Guide shoes of other materials are available and can frequently be beneficial in certain specific applications.
While it is desirable to provide guide shoes of material with long wearing qualities, they must be soft enough to be trued in for any particular job. Sunnen general purpose shoes meet these requirements.
When work being honed is unusually rough or out-of-round or has burs or wire edges, hardened steel guide shoes are usually more economical. Hardened shoes are also more economical when CBN/ Borazon or diamond honing stones are being used.

When material being honed is very soft or subject to galling or if very fine finish is required, bronze guide shoes are recommended.

Should your particular application require special guide shoes not described in our catalog, please contact Customer Service Department - Industrial Division in St. Louis or your local Field Engineer.

IMPORTANT
Guide shoes of different materials should never be mixed on a multi-stone length mandrel. When shoes are removed from a mandrel to be used later, they should be re assembled in their original position.

WEDGES - Wedges are subject to wear, and to assure best performance they should be replaced when they show signs of wear. Old wedges should be discarded. Wedges supplied with all permanent type mandrels have long life but should be inspected regularly and replaced if showing any wear. This is especially important in AK20, BAL20, AL20, and Y32 honing unit groups.

WEDGE PLATES - High and low wedge plates are supplied with Y (Keyway) mandrels of 35 mm (1.365") size and larger to provide coverage of mandrel diameter range, even with worn guide shoes and stones. Use low wedge plate (e.g., Y56L-W) unless stone cannot be expanded far enough to reach diameter to be honed (within range of honing unit). Use high wedge plate (e.g., Y56H-W) when necessary to reach diameter to be honed.

MANDREL SHIMS - Furnished with all P28 honing units. They are inserted between mandrel body and guide shoe when necessary to reach maximum diameter, especially when guide shoes are worn. They can also be used to help compensate for mandrel runout.

ALTERATION OF HONING UNITS
HOW TO ALTER STONES, MANDREL AND SHOES: When alteration of honing stone is necessary, cut through abrasive with an old hacksaw blade and break unwanted section of stone from stoneholder with a pair of pliers. Do not cut into die cast stoneholder (except as described under blind hole alterations). Use a file or bench grinder to shorten guiding surfaces of shoe. Both stone and guide shoe should be altered identically and in same relative position.

ALTERATIONS FOR SHORT OPEN HOLES:
Always consider possibility of stacking parts with short bores so that they may be honed as one long bore using standard honing units. Individual parts (if they have at least one flat face) with bore lengths of 1/4 diameter, or less, can also be honed by holding parts flat against face plate of square honing fixture. For precision sizing of short open holes, STONE AND GUIDE SHOE LENGTH SHOULD BE BETWEEN 2/3 and 1-1/2 TIMES BORE LENGTH to be honed.

ALTERATION FOR SHORT OPEN HOLES
COMPLETED ALTERATION FOR SHORT OPEN HOLES
ALTERATION OF HONING STONE

ALTERATION OF INTEGRAL GUIDE SHOE

ALTERATION OF REPLACEABLE GUIDE SHOE
When alteration is necessary, both stone and guide shoe must be shortened by the same amount. Any alteration of this type should shorten stone and shoe equally from both ends so that honing area remaining is centered over wedge contacts on stoneholder.

If greater accuracy is required than is obtained after alteration, refer to Troubleshooting Chart on page 31. Additional information is provided in Data File 102, “Honing Short Bores.” Write for free copy.

ALTERATIONS FOR BLIND HOLES: If at all possible, provide a relief (undercut) at closed end of hole to permit stone to overstroke honed surface. Relief does not have to be more than a few thousandths deep and can actually blend in with bore when finish honed, but it should be as long as possible, preferably 1/3 length of stone.

Sunnen honing units in K, J-K, AK, J-AK, BL, L, BAL, AL and P28 groups can be utilized for honing bores that have one end closed. In honing blind holes, it is necessary for stone and guide shoe to extend flush with tip of honing unit. If your application utilizes one of P28 group of honing units, install blind hole wedge and R28 honing stones (see Honing Supplies Catalog). Remaining mandrel groups have a tip which extends slightly beyond front end of stone and guide shoe. For all blind hole work this tip must be cut off, as illustrated below. Mandrels which have been altered in this manner can still be used for honing open holes using a full length stone and guide shoe. Blind hole Y mandrels are available on special order, but P20 and D Honing Unit groups are not adaptable for honing blind holes.

ALTERATION FOR BLIND HOLES (Extremely Short)

Some improvement can be obtained in honing blind holes where no relief is possible at blind end by using a “HARD-TIP” stone. Front section of abrasive has a harder bond than rest of stone. This harder abrasive reduces excessive wear that stone tip is exposed to when no relief is present. We can supply hard-tip stones - in most stone sizes. Minimum order quantity is one standard package of any individual part number. Allow one week for shipment. A “customer made” alteration can achieve same results as a hard-tip stone. Select a stone considerably harder than one normally used for job, and alter as illustrated.

For additional techniques on blind hole honing, refer to “Troubleshooting Guide” and request copies of Sunnen Bore Sizing & Finishing Technology Data Files #102 and #103.

ALTERATIONS FOR TANDEM HOLES: Sunnen honing units can be used to size two or more “in-line” or tandem bores in perfect alignment. Stone and guide shoes must be of proper length so that entire stone surface will contact one or other of bores at some time during honing stroke. To keep honing unit true during operation, STONES AND GUIDE SHOE LENGTH MUST BE AT LEAST TWICE CENTER-TO-CENTER TANDEM DISTANCE OF BORES (see illustration). When honing unit meets this requirement, alteration is not required. It may be necessary to reverse part end for end on honing unit to obtain identical bore sizes. Never stroke either of tandem bores completely off stone and guide shoes.
TOOLING FOR TANDEM BORES

Should stone and guide shoe length be less than twice tandem distance, center area of stone and guide shoe will not wear and a resulting “hump” in honing unit will bellmouth inside ends of both bores of tandem. In some tandem applications, it is necessary to alter honing unit by cutting away area of stone and guide shoe that would become “hump”. Remove from center of both stone and guide shoe, an amount equal to amount stone (and guide shoe) is short of being twice tandem distance. For example, a part having a 2-3/4" tandem spacing would require a 5-1/2" stone and guide shoe, but honing unit has a stone and guide length of only 4-1/2". This honing unit can be used by removing 1" from center of 4-1/2" stone and guide shoe length. Multiple-stone honing units P20 and P28 can sometimes be used by setting up honing unit to leave out center stones and shoes. Special tandem type mandrels can generally be supplied for those applications which have too long a tandem distance for honing with altered honing units. Contact your Sunnen Field Engineer or factory. Additional discussion on honing tandem and multiple land bores is contained in Data File 106. Write for free copy.

ALTERATION FOR TANDEM BORES

Mandrels can be altered as illustrated to hone short bores using automatic size control. Alteration allows sensing tip to be positioned closer to end of honing stone. Alteration is necessary if overstroke of a short bore does not depress sensing tip a sufficient amount to allow automatic size control to work.

GLOSSARY OF TERMS

ADAPTER - A part used with certain mandrels to adapt them to fit spindle on honing machine.
ALTERED STONE - A standard honing stone which has been shortened or otherwise changed for a specific application.
ALUMINUM OXIDE - An abrasive material generally most suitable for fast stock removal in tough materials such as most types of steel. It is designated by letter “A” in Sunnen stone code (example: K17-A57).
BARREL SHAPE - A condition where extreme ends of a bore are smaller in diameter than middle.
BELLMOUTH - A condition where extreme end or ends of a bore are larger in diameter than middle.
BLIND HOLE - A bore that is constricted or closed at one end.
BOND - Material that holds abrasive grains together in a honing stone.
CBN (Cubic Boron Nitride) - A synthetic abrasive that is second in hardness to, more chemically stable than, and as costly as diamond. CBN is best suited for steels, especially tool steels, high-speed steels and superalloys. General Electric tradename for CBN is Borazon. CBN is designated by letter “N” in Sunnen stone code (example: K12-NR53).

CONICAL RUNOUT - Honing unit not parallel to rotation centerline which causes eccentric motion of one end of workpiece.

CORK BOND - Bonding material for abrasive, composed of powdered cork and a phenolic resin. Cork bonded honing stones are used where extremely fine finishes (say, 2 to 4 microinches) on non-ferrous materials are required.

DEBURRING - Honing process used to remove burrs, sharp edges or similar material from rough bores.

DIAMOND - Hardest abrasive known to man, but chemically not suited for honing materials such as steel. Diamond is only Sunnen abrasive capable of honing very hard materials such as tungsten carbide, ceramics, and glass. It is designated by letter “D” in Sunnen stone code (example: K12-DV57).

DIAMOND STONES - Honing stone made with crushed diamond particles bonded together. It is only abrasive material capable of honing very hard materials such as tungsten carbide, glass, and ceramics.

DIAMOND DRESSER - Diamond abrasive used to dress aluminum oxide and silicon carbide honing stones.

GLAZED STONE - Stone with cutting action impaired because abrasive particles failed to break out of bond when cutting edges wore off. This condition shows up when bond is too hard and/or cutting pressure is too low.

GUIDE SHOES - Part of honing unit that stabilizes bore being honed on tool.

HARDNESS - As applied to honing stone, describes strength of bond that holds abrasive particles together. A hard bond will hold abrasive grains longer; a soft bond will permit stone to “break down” faster, exposing new sharp abrasive grains.

HARD-TIP STONE - Honing stone having a tip or end of harder abrasive than remaining length of stone. Used for honing blind holes where sufficient relief cannot be provided. See “Alterations for Blind Holes” for how to make hard-tip stones.

HONING - Abrasive machining process primarily used for stock removal, precision sizing and surface finishing of internal and external cylindrical surfaces. Characterized by use of a self-sharpening abrasive stone, a relatively large area of contact with work, and relatively low cutting speeds.

HONING LENGTH - Actual length of surface being honed.

HONING STONE - Abrasive stick consisting of thousands of small abrasive grains bonded together, cemented to metal holder.

HONING UNIT - Complete honing tool consisting of adapter (if required), mandrel and wedge, stone(s), guide shoe(s), truing sleeve, and stone retainer or tension block.

LOADED STONE - Honing stone with cutting action impaired due to cutting surface being partially covered with foreign material, usually material being honed. This condition is sometimes encountered when honing soft materials.

MANDREL - Part of honing unit which holds and positions honing stone and guide shoes in their correct relative positions.

METAL BOND - Metallic bond used with diamond or CBN/Borazon grit to provide a very long lasting honing stone.

OVERSTROKE - Distance that workpiece is stroked over end of stone; it can also be distance stone extends beyond end of workpiece at end of each stroke. This distance is generally one-half length of stone (or of part, whichever is shortest). If for any reason a shorter stroke is used, the following formulas are useful:

\[
\text{Stone (or shoe) overstroke (on either end)} = \frac{\text{Stroke length} + \text{Stone length} - \text{Part length}}{2}
\]

\[
\text{Part overstroke (on either end)} = \frac{\text{Stroke length} + \text{Part length} - \text{Stone length}}{2}
\]
PARALLEL RUNOUT - Off-center rotation of honing unit which causes eccentric motion of workpiece.

RAINBOW (or bow) - Sometimes called camber or banana shape. Condition where a bore’s diameter may be same over its full length but whose axis or center-line is curved.

RELIEF - Enlargement of diameter at bottom of blind hole which makes it possible for end of honing stone to pass beyond bottom end of surface being honed.

SILICON CARBIDE - Hard and brittle synthetic abrasive for stock removal in soft materials such as brass, bronze, aluminum, cast iron, etc. and in extremely hard material such as tool steel. Silicon Carbide is also used for obtaining fine finishes in all materials. It is designated by letter ‘J’ in Sunnen stone code (example K12-J85).

STACKING - Technique for honing short parts. Faces of parts must be square with bore prior to honing. A holding fixture is necessary for aligning and holding parts on a common center.

TAPER - Bore condition where diameter of bore gradually increases from one end of bore to other.

TRUING SLEEVE - Cylinder or workpiece whose purpose is to make guide shoes and stone straight and parallel to each other, and radius to approximate diameter to be honed.

WAVINESS - Longitudinal wave, series of waves or ripple in a bore surface.

WEDGE - Part of Honing Unit that expands honing stone and applies cutting pressure.
FIGURE C-1, Coolant System Flow Diagram
IS PUMP ROTATING?

DOES PUMP ROTATION CORRESPOND TO ARROW ON PUMP?

LEVEL OF CLEAN COOLANT RESERVOIR (OPEN CANISTER)?

IS EITHER FUSE 4 FU OR 5 FU BLOWN?

CHECK WIRES & CONNECTIONS. IF NOT REPLACE CLEAN COOLANT PUMP

CHECK WIRES & CONNECTIONS IF NOT REPLACE MOTOR

REVERSE 2 LEADS ON SUPPLY CORD TO MACHINE

PUMP COMPONENTS ARE WORN. (SEE PUMP MAINTENANCE)

REPLACE BLOWN FUSE *

REPLACE FILTER

* NOTE: 4FU AND 5FU MUST BE 1-AMP FUSES. OLDER MACHINES MAY HAVE SMALLER FUSES BUT MUST BE REPLACED WITH 1-AMP FUSES.
E - STROKER CARRIAGE
HOLE PATTERN
EC declaration of conformity
according to the EU Machinery Directive 2006/42/EG, Annex II, 1.A

Manufacturer:
Sunnen Products Co.,
7910 Manchester
63143 St. Louis, Missouri USA

Person residing within the Community authorised to compile the relevant technical documentation:
Julian Hooper
Sunnen Products Ltd.,
Centro 1 Maxted Rd
HP28L Hemel Hempstead, Hertfordshire

Description and identification of the machinery:
Make: ML-5000C[] Horizontal Honing Machine
Serial no: XXXX

It is expressly declared that the machinery fulfils all relevant provisions of the following EU Directives:

Reference to the harmonised standards used, as referred to in Article 7(2):
EN 60204-1:2006 Safety of machinery – Electrical equipment of machines – Part 1: General requirements

St. Louis, Missouri USA, 2011.11.07

Signature
Michael C. Haughey
Chief Operating Officer

Like any machinery, this equipment may be dangerous if used improperly. Be sure to read and follow the instructions for the operation of the equipment.

MANUFACTURED UNDER ONE OR MORE OF THE FOLLOWING UNITED STATES PATENTS

5,433,656 5,707,278 6,780,084 7,727,051
5,443,417 6,074,282 7,371,149 8,277,280
5,663,886 6,527,620 7,575,502

OTHER U.S. AND FOREIGN PATENTS PENDING

SUNNEN PRODUCTS COMPANY, ST. LOUIS, MO U.S.A.
FRACTION / DECIMAL / MILLIMETER EQUIVALENTS CHART

<table>
<thead>
<tr>
<th>FRACTION</th>
<th>INCH</th>
<th>DECIMAL</th>
<th>MILLIMETER</th>
<th>FRACTION</th>
<th>INCH</th>
<th>DECIMAL</th>
<th>MILLIMETER</th>
<th>FRACTION</th>
<th>INCH</th>
<th>DECIMAL</th>
<th>MILLIMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
</tr>
<tr>
<td>1/64</td>
<td>.015625</td>
<td>.062500</td>
<td>.476250</td>
<td>1/32</td>
<td>.031250</td>
<td>.125000</td>
<td>.793750</td>
<td>3/64</td>
<td>.046875</td>
<td>.187500</td>
<td>.119063</td>
</tr>
<tr>
<td>3/64</td>
<td>.056250</td>
<td>.220833</td>
<td>.138889</td>
<td>1/16</td>
<td>.062500</td>
<td>.250000</td>
<td>.156250</td>
<td>5/64</td>
<td>.078125</td>
<td>.312500</td>
<td>.187500</td>
</tr>
<tr>
<td>7/64</td>
<td>.109375</td>
<td>.437500</td>
<td>.234375</td>
<td>1/8</td>
<td>.125000</td>
<td>.500000</td>
<td>.312500</td>
<td>9/64</td>
<td>.140625</td>
<td>.562500</td>
<td>.250000</td>
</tr>
<tr>
<td>15/64</td>
<td>.187500</td>
<td>.734375</td>
<td>.362500</td>
<td>5/32</td>
<td>.195312</td>
<td>.765625</td>
<td>.476250</td>
<td>31/64</td>
<td>.234375</td>
<td>.926562</td>
<td>.562500</td>
</tr>
<tr>
<td>19/32</td>
<td>.242188</td>
<td>1.000000</td>
<td>31/32</td>
<td>.242188</td>
<td>1.000000</td>
<td>5/8</td>
<td>.312500</td>
<td>.156250</td>
<td>9/16</td>
<td>.378906</td>
<td>1.500000</td>
</tr>
<tr>
<td>63/64</td>
<td>.984375</td>
<td>2.500000</td>
<td>13/16</td>
<td>.687500</td>
<td>2.750000</td>
<td>15/16</td>
<td>.781250</td>
<td>.390625</td>
<td>17/16</td>
<td>.875000</td>
<td>3.500000</td>
</tr>
<tr>
<td>19/32</td>
<td>.187500</td>
<td>.750000</td>
<td>21/16</td>
<td>.984375</td>
<td>2.500000</td>
<td>23/32</td>
<td>.234375</td>
<td>.926562</td>
<td>23/16</td>
<td>.984375</td>
<td>2.500000</td>
</tr>
<tr>
<td>15/16</td>
<td>.937500</td>
<td>2.375000</td>
<td>25/16</td>
<td>.984375</td>
<td>2.500000</td>
<td>27/32</td>
<td>.296296</td>
<td>1.166667</td>
<td>27/16</td>
<td>.984375</td>
<td>2.500000</td>
</tr>
<tr>
<td>7/8</td>
<td>.875000</td>
<td>2.222222</td>
<td>29/16</td>
<td>1.000000</td>
<td>2.500000</td>
<td>31/32</td>
<td>.468750</td>
<td>1.875000</td>
<td>31/16</td>
<td>.968750</td>
<td>2.437500</td>
</tr>
<tr>
<td>9/16</td>
<td>.937500</td>
<td>2.375000</td>
<td>33/16</td>
<td>1.000000</td>
<td>2.500000</td>
<td>35/32</td>
<td>.531250</td>
<td>2.187500</td>
<td>35/16</td>
<td>.968750</td>
<td>2.437500</td>
</tr>
<tr>
<td>11/16</td>
<td>.937500</td>
<td>2.375000</td>
<td>37/16</td>
<td>1.000000</td>
<td>2.500000</td>
<td>39/32</td>
<td>.609375</td>
<td>2.437500</td>
<td>39/16</td>
<td>.968750</td>
<td>2.437500</td>
</tr>
<tr>
<td>13/16</td>
<td>.937500</td>
<td>2.375000</td>
<td>41/16</td>
<td>1.000000</td>
<td>2.500000</td>
<td>43/32</td>
<td>.687500</td>
<td>2.750000</td>
<td>41/16</td>
<td>.984375</td>
<td>2.500000</td>
</tr>
<tr>
<td>15/16</td>
<td>.937500</td>
<td>2.375000</td>
<td>45/16</td>
<td>1.000000</td>
<td>2.500000</td>
<td>47/32</td>
<td>.765625</td>
<td>3.062500</td>
<td>47/16</td>
<td>.984375</td>
<td>2.500000</td>
</tr>
<tr>
<td>17/16</td>
<td>.984375</td>
<td>2.500000</td>
<td>49/16</td>
<td>1.000000</td>
<td>2.500000</td>
<td>51/32</td>
<td>.843750</td>
<td>3.375000</td>
<td>49/16</td>
<td>.984375</td>
<td>2.500000</td>
</tr>
<tr>
<td>19/16</td>
<td>.984375</td>
<td>2.500000</td>
<td>51/16</td>
<td>1.000000</td>
<td>2.500000</td>
<td>53/32</td>
<td>.921875</td>
<td>3.687500</td>
<td>49/16</td>
<td>.984375</td>
<td>2.500000</td>
</tr>
<tr>
<td>21/16</td>
<td>.984375</td>
<td>2.500000</td>
<td>55/16</td>
<td>1.000000</td>
<td>2.500000</td>
<td>57/32</td>
<td>.996875</td>
<td>3.979688</td>
<td>49/16</td>
<td>.984375</td>
<td>2.500000</td>
</tr>
<tr>
<td>23/16</td>
<td>.984375</td>
<td>2.500000</td>
<td>57/16</td>
<td>1.000000</td>
<td>2.500000</td>
<td>59/32</td>
<td>.996875</td>
<td>3.979688</td>
<td>49/16</td>
<td>.984375</td>
<td>2.500000</td>
</tr>
<tr>
<td>25/16</td>
<td>.984375</td>
<td>2.500000</td>
<td>59/16</td>
<td>1.000000</td>
<td>2.500000</td>
<td>61/32</td>
<td>.996875</td>
<td>3.979688</td>
<td>49/16</td>
<td>.984375</td>
<td>2.500000</td>
</tr>
<tr>
<td>27/16</td>
<td>.984375</td>
<td>2.500000</td>
<td>61/16</td>
<td>1.000000</td>
<td>2.500000</td>
<td>63/32</td>
<td>1.000000</td>
<td>4.000000</td>
<td>49/16</td>
<td>.984375</td>
<td>2.500000</td>
</tr>
</tbody>
</table>

FOMULAS:

- **MULTIPLY BY**
 - INCHES (in) x 25.4 = MILLIMETERS (mm)
 - FEET (ft) x 0.3048 = METERS (m)

- **TO GET**
 - MILLIMETERS (mm) x 0.03937 = INCHES (in)
 - METERS (m) x 3.281 = FEET (ft)

Sunnen® reserves the right to change or revise specifications and product design in connection with any feature of our products contained herein. Such changes do not entitle the buyer to corresponding changes, improvements, additions, or replacements for equipment, supplies or accessories previously sold. Information contained herein is considered to be accurate based on available information at the time of printing. Should any discrepancy of information arise, Sunnen recommends that user verify discrepancy with Sunnen before proceeding.

http://www.sunnen.com

e-mail: sunnen@sunnen.com

SUNNEN PRODUCTS COMPANY
7910 Manchester Road, St. Louis, MO 63143 U.S.A.
Phone: 314-781-3100 Fax: 314-781-2268
U.S.A. Toll-Free Sales and Service: 1-800-325-3670
International Division Fax: 314-781-6128

PRINTED IN U.S.A. 1303 ©COPYRIGHT SUNNEN® PRODUCTS COMPANY 2013, ALL RIGHTS RESERVED

"SUNNEN® AND THE SUNNEN LOGO ARE REGISTERED TRADEMARKS OF SUNNEN PRODUCTS COMPANY."